Slow Noise in the Period of a Biological Oscillator Underlies Gradual Trends and Abrupt Transitions in Phasic Relationships in Hybrid Neural Networks
Umeshkanta S Thounaojam,
Jianxia Cui,
Sharon E Norman,
Robert J Butera and
Carmen C Canavier
PLOS Computational Biology, 2014, vol. 10, issue 5, 1-21
Abstract:
In order to study the ability of coupled neural oscillators to synchronize in the presence of intrinsic as opposed to synaptic noise, we constructed hybrid circuits consisting of one biological and one computational model neuron with reciprocal synaptic inhibition using the dynamic clamp. Uncoupled, both neurons fired periodic trains of action potentials. Most coupled circuits exhibited qualitative changes between one-to-one phase-locking with fairly constant phasic relationships and phase slipping with a constant progression in the phasic relationships across cycles. The phase resetting curve (PRC) and intrinsic periods were measured for both neurons, and used to construct a map of the firing intervals for both the coupled and externally forced (PRC measurement) conditions. For the coupled network, a stable fixed point of the map predicted phase locking, and its absence produced phase slipping. Repetitive application of the map was used to calibrate different noise models to simultaneously fit the noise level in the measurement of the PRC and the dynamics of the hybrid circuit experiments. Only a noise model that added history-dependent variability to the intrinsic period could fit both data sets with the same parameter values, as well as capture bifurcations in the fixed points of the map that cause switching between slipping and locking. We conclude that the biological neurons in our study have slowly-fluctuating stochastic dynamics that confer history dependence on the period. Theoretical results to date on the behavior of ensembles of noisy biological oscillators may require re-evaluation to account for transitions induced by slow noise dynamics.Author Summary: Many biological phenomena exhibit synchronized oscillations in the presence of noise and heterogeneity. These include brain rhythms that underlie cognition and spinal rhythms that underlie rhythmic motor activity like breathing and locomotion. A two oscillator system was constructed in which most of the circuit was implemented in a computer model, and was therefore completely known and under the control of the investigators. The one biological component was an oscillator in which an apparently novel manifestation of biological noise was identified, dynamical noise in the period of the oscillator itself. This study quantifies how much noise and heterogeneity this simple two oscillator system can tolerate before desynchronizing. More complicated systems of oscillators may follow similar principles.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003622 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03622&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003622
DOI: 10.1371/journal.pcbi.1003622
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().