Spatial Generalization in Operant Learning: Lessons from Professional Basketball
Tal Neiman and
Yonatan Loewenstein
PLOS Computational Biology, 2014, vol. 10, issue 5, 1-8
Abstract:
In operant learning, behaviors are reinforced or inhibited in response to the consequences of similar actions taken in the past. However, because in natural environments the “same” situation never recurs, it is essential for the learner to decide what “similar” is so that he can generalize from experience in one state of the world to future actions in different states of the world. The computational principles underlying this generalization are poorly understood, in particular because natural environments are typically too complex to study quantitatively. In this paper we study the principles underlying generalization in operant learning of professional basketball players. In particular, we utilize detailed information about the spatial organization of shot locations to study how players adapt their attacking strategy in real time according to recent events in the game. To quantify this learning, we study how a make \ miss from one location in the court affects the probabilities of shooting from different locations. We show that generalization is not a spatially-local process, nor is governed by the difficulty of the shot. Rather, to a first approximation, players use a simplified binary representation of the court into 2 pt and 3 pt zones. This result indicates that rather than using low-level features, generalization is determined by high-level cognitive processes that incorporate the abstract rules of the game.Author Summary: According to the law of effect, formulated a century ago by Edward Thorndike, actions which are rewarded in a particular situation are more likely to be executed when that same situation recurs. However, in natural settings the same situation never recurs and therefore, generalization from one state of the world to other states is an essential part of the process of learning. In this paper we utilize basketball statistics to study the computational principles underlying generalization in operant learning of professional basketball players. We show that players are more likely to attempt a field goal from the vicinity of a previously made shot than they are from the vicinity of a missed shot, as expected from the law of effect. However, the outcome of a shot can also affect the likelihood of attempting another shot at a different location. Using hierarchical clustering we characterize the spatial pattern of generalization and show that generalization is primarily determined by the type of shot, 3 pt vs. 2 pt. This result indicates that rather than using low-level features, generalization is determined by high-level cognitive processes that incorporate the abstract rules of the game.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003623 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03623&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003623
DOI: 10.1371/journal.pcbi.1003623
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().