EconPapers    
Economics at your fingertips  
 

Inferring Host Gene Subnetworks Involved in Viral Replication

Deborah Chasman, Brandi Gancarz, Linhui Hao, Michael Ferris, Paul Ahlquist and Mark Craven

PLOS Computational Biology, 2014, vol. 10, issue 5, 1-22

Abstract: Systematic, genome-wide loss-of-function experiments can be used to identify host factors that directly or indirectly facilitate or inhibit the replication of a virus in a host cell. We present an approach that combines an integer linear program and a diffusion kernel method to infer the pathways through which those host factors modulate viral replication. The inputs to the method are a set of viral phenotypes observed in single-host-gene mutants and a background network consisting of a variety of host intracellular interactions. The output is an ensemble of subnetworks that provides a consistent explanation for the measured phenotypes, predicts which unassayed host factors modulate the virus, and predicts which host factors are the most direct interfaces with the virus. We infer host-virus interaction subnetworks using data from experiments screening the yeast genome for genes modulating the replication of two RNA viruses. Because a gold-standard network is unavailable, we assess the predicted subnetworks using both computational and qualitative analyses. We conduct a cross-validation experiment in which we predict whether held-aside test genes have an effect on viral replication. Our approach is able to make high-confidence predictions more accurately than several baselines, and about as well as the best baseline, which does not infer mechanistic pathways. We also examine two kinds of predictions made by our method: which host factors are nearest to a direct interaction with a viral component, and which unassayed host genes are likely to be involved in viral replication. Multiple predictions are supported by recent independent experimental data, or are components or functional partners of confirmed relevant complexes or pathways. Integer program code, background network data, and inferred host-virus subnetworks are available at http://www.biostat.wisc.edu/~craven/chasman_host_virus/.Author Summary: Nearly every step of the viral life cycle requires the action or use of host machinery. Genome-wide suppression experiments have been used to identify individual host genes whose products are involved in viral replication. The hit sets identified by such experiments are typically fairly large and difficult to comprehend. We propose a method to infer subnetworks of intracellular interactions that explain the experimental data. These inferred subnetworks make the data more interpretable in terms of the mechanisms of viral replication and can be used to guide further experiments.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003626 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03626&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003626

DOI: 10.1371/journal.pcbi.1003626

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1003626