AprioriGWAS, a New Pattern Mining Strategy for Detecting Genetic Variants Associated with Disease through Interaction Effects
Qingrun Zhang,
Quan Long and
Jurg Ott
PLOS Computational Biology, 2014, vol. 10, issue 6, 1-14
Abstract:
Identifying gene-gene interaction is a hot topic in genome wide association studies. Two fundamental challenges are: (1) how to smartly identify combinations of variants that may be associated with the trait from astronomical number of all possible combinations; and (2) how to test epistatic interaction when all potential combinations are available. We developed AprioriGWAS, which brings two innovations. (1) Based on Apriori, a successful method in field of Frequent Itemset Mining (FIM) in which a pattern growth strategy is leveraged to effectively and accurately reduce search space, AprioriGWAS can efficiently identify genetically associated genotype patterns. (2) To test the hypotheses of epistasis, we adopt a new conditional permutation procedure to obtain reliable statistical inference of Pearson's chi-square test for the contingency table generated by associated variants. By applying AprioriGWAS to age-related macular degeneration (AMD) data, we found that: (1) angiopoietin 1 (ANGPT1) and four retinal genes interact with Complement Factor H (CFH). (2) GO term “glycosaminoglycan biosynthetic process” was enriched in AMD interacting genes. The epistatic interactions newly found by AprioriGWAS on AMD data are likely true interactions, since genes interacting with CFH are retinal genes, and GO term enrichment also verified that interaction between glycosaminoglycans (GAGs) and CFH plays an important role in disease pathology of AMD. By applying AprioriGWAS on Bipolar disorder in WTCCC data, we found variants without marginal effect show significant interactions. For example, multiple-SNP genotype patterns inside gene GABRB2 and GRIA1 (AMPA subunit 1 receptor gene). AMPARs are found in many parts of the brain and are the most commonly found receptor in the nervous system. The GABRB2 mediates the fastest inhibitory synaptic transmission in the central nervous system. GRIA1 and GABRB2 are relevant to mental disorders supported by multiple evidences.Author Summary: Genes do not operate in vacuum. They interact with each other in many ways. Therefore, to figure out genetic causes of disease by case-control association studies, it is important to take interactions into account. There are two fundamental challenges in interaction-focused analysis. The first is the number of possible combinations of genetic variants easily goes to astronomic which is beyond current computational facility, which is referred as “the curse of dimensionality” in field of computer science. The other is, even if all potential combinations could be exhaustively checked, genuine signals are likely to be buried by false positives that are composed of single variant with large main effect and some other irrelevant variant. In this work, we propose AprioriGWAS that employees Apriori, an algorithm that pioneers the branch of “Frequent Itemset Mining” in computer science to cope with daunting numbers of combinations, and conditional permutation, to enable real signals standing out. By applying AprioriGWAS to age-related macular degeneration (AMD) data and bipolar disorder (BD) in WTCCC data, we found interesting interactions between sensible genes in terms of disease. Consequently, AprioriGWAS could be a good tool to find epistasis interaction from GWA data.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003627 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03627&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003627
DOI: 10.1371/journal.pcbi.1003627
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol (ploscompbiol@plos.org).