EconPapers    
Economics at your fingertips  
 

Variability of Metabolite Levels Is Linked to Differential Metabolic Pathways in Arabidopsis's Responses to Abiotic Stresses

Nadine Töpfer, Federico Scossa, Alisdair Fernie and Zoran Nikoloski

PLOS Computational Biology, 2014, vol. 10, issue 6, 1-11

Abstract: Constraint-based approaches have been used for integrating data in large-scale metabolic networks to obtain insights into metabolism of various organisms. Due to the underlying steady-state assumption, these approaches are usually not suited for making predictions about metabolite levels. Here, we ask whether we can make inferences about the variability of metabolite levels from a constraint-based analysis based on the integration of transcriptomics data. To this end, we analyze time-resolved transcriptomics and metabolomics data from Arabidopsis thaliana under a set of eight different light and temperature conditions. In a previous study, the gene expression data have already been integrated in a genome-scale metabolic network to predict pathways, termed modulators and sustainers, which are differentially regulated with respect to a biochemically meaningful data-driven null model. Here, we present a follow-up analysis which bridges the gap between flux- and metabolite-centric methods. One of our main findings demonstrates that under certain environmental conditions, the levels of metabolites acting as substrates in modulators or sustainers show significantly lower temporal variations with respect to the remaining measured metabolites. This observation is discussed within the context of a systems-view of plasticity and robustness of metabolite contents and pathway fluxes. Our study paves the way for investigating the existence of similar principles in other species for which both genome-scale networks and high-throughput metabolomics data of high quality are becoming increasingly available.Author Summary: Organisms are usually exposed to changing environments and balance these perturbations by altering their metabolic state. Gaining a deeper understanding of metabolic adjustment to varying external conditions is important for the development of advanced engineering strategies for microorganisms as well as for higher plants. One tool which is particularly suited for investigating these processes is genome-scale metabolic models. These large-scale representations of the underlying metabolic networks enable the integration of experimental data and application of constrain-based mathematical approaches to estimate flux rates through the chemical reactions of the network under different environmental scenarios. However, for most of these approaches the assumption of a steady-state (flux balance) is indispensable and therefore precludes the prediction of metabolite concentrations. Here, we present a data-driven observation that relates results from a flux-centric constraint-based approach that is based on transcriptomics data to metabolite levels from the same experiments. Our observations suggest that constraint-based modeling approaches in combination with high-throughput data can be used to infer regulatory principles about the plasticity and robustness of metabolic behavior from the stoichiometry of the underlying reactions alone.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003656 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03656&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003656

DOI: 10.1371/journal.pcbi.1003656

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1003656