EconPapers    
Economics at your fingertips  
 

Augmenting Microarray Data with Literature-Based Knowledge to Enhance Gene Regulatory Network Inference

Guocai Chen, Michael J Cairelli, Halil Kilicoglu, Dongwook Shin and Thomas C Rindflesch

PLOS Computational Biology, 2014, vol. 10, issue 6, 1-16

Abstract: Gene regulatory networks are a crucial aspect of systems biology in describing molecular mechanisms of the cell. Various computational models rely on random gene selection to infer such networks from microarray data. While incorporation of prior knowledge into data analysis has been deemed important, in practice, it has generally been limited to referencing genes in probe sets and using curated knowledge bases. We investigate the impact of augmenting microarray data with semantic relations automatically extracted from the literature, with the view that relations encoding gene/protein interactions eliminate the need for random selection of components in non-exhaustive approaches, producing a more accurate model of cellular behavior. A genetic algorithm is then used to optimize the strength of interactions using microarray data and an artificial neural network fitness function. The result is a directed and weighted network providing the individual contribution of each gene to its target. For testing, we used invasive ductile carcinoma of the breast to query the literature and a microarray set containing gene expression changes in these cells over several time points. Our model demonstrates significantly better fitness than the state-of-the-art model, which relies on an initial random selection of genes. Comparison to the component pathways of the KEGG Pathways in Cancer map reveals that the resulting networks contain both known and novel relationships. The p53 pathway results were manually validated in the literature. 60% of non-KEGG relationships were supported (74% for highly weighted interactions). The method was then applied to yeast data and our model again outperformed the comparison model. Our results demonstrate the advantage of combining gene interactions extracted from the literature in the form of semantic relations with microarray analysis in generating contribution-weighted gene regulatory networks. This methodology can make a significant contribution to understanding the complex interactions involved in cellular behavior and molecular physiology.Author Summary: We have developed a methodology that combines standard computational analysis of gene expression data with knowledge in the literature to identify pathways of gene and protein interactions. We extract the knowledge from PubMed citations using a tool (SemRep) that identifies specific relationships between genes or proteins. We string together networks of individual interactions that are found within citations that refer to the target pathways. Upon this skeleton of interactions, we calculate the weight of the interaction with the gene expression data captured over multiple time points using state-of-the-art analysis algorithms. Not surprisingly, this approach of combining prior knowledge into the analysis process significantly improves the performance of the analysis. This work is most significant as an example of how the wealth of textual data related to gene interactions can be incorporated into computational analysis, not solely to identify this type of pathway (a gene regulatory network) but for any type of similar biological problem.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003666 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03666&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003666

DOI: 10.1371/journal.pcbi.1003666

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1003666