ODE Constrained Mixture Modelling: A Method for Unraveling Subpopulation Structures and Dynamics
Jan Hasenauer,
Christine Hasenauer,
Tim Hucho and
Fabian J Theis
PLOS Computational Biology, 2014, vol. 10, issue 7, 1-17
Abstract:
Functional cell-to-cell variability is ubiquitous in multicellular organisms as well as bacterial populations. Even genetically identical cells of the same cell type can respond differently to identical stimuli. Methods have been developed to analyse heterogeneous populations, e.g., mixture models and stochastic population models. The available methods are, however, either incapable of simultaneously analysing different experimental conditions or are computationally demanding and difficult to apply. Furthermore, they do not account for biological information available in the literature. To overcome disadvantages of existing methods, we combine mixture models and ordinary differential equation (ODE) models. The ODE models provide a mechanistic description of the underlying processes while mixture models provide an easy way to capture variability. In a simulation study, we show that the class of ODE constrained mixture models can unravel the subpopulation structure and determine the sources of cell-to-cell variability. In addition, the method provides reliable estimates for kinetic rates and subpopulation characteristics. We use ODE constrained mixture modelling to study NGF-induced Erk1/2 phosphorylation in primary sensory neurones, a process relevant in inflammatory and neuropathic pain. We propose a mechanistic pathway model for this process and reconstructed static and dynamical subpopulation characteristics across experimental conditions. We validate the model predictions experimentally, which verifies the capabilities of ODE constrained mixture models. These results illustrate that ODE constrained mixture models can reveal novel mechanistic insights and possess a high sensitivity.Author Summary: In this manuscript, we introduce ODE constrained mixture models for the analysis of population snapshot data of kinetics and dose responses. Population snapshot data can for instance be derived from flow cytometry or single-cell microscopy and provide information about the population structure and the dynamics of subpopulations. Currently available methods enable, however, only the extraction of this information if the subpopulations are very different. By combining pathway-specific ODE and mixture models, a more sensitive method is obtained, which can simultaneously analyse a variety of experimental conditions. ODE constrained mixture models facilitate the reconstruction of subpopulation sizes and dynamics, even in situations where the subpopulations are hardly distinguishable. This is shown for a simulation example as well as for the process of NGF-induced Erk1/2 phosphorylation in primary sensory neurones. We find that the proposed method allows for a simple but pervasive analysis of heterogeneous cell systems and more profound, mechanistic insights.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003686 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03686&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003686
DOI: 10.1371/journal.pcbi.1003686
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().