A Likelihood-Based Approach to Identifying Contaminated Food Products Using Sales Data: Performance and Challenges
James Kaufman,
Justin Lessler,
April Harry,
Stefan Edlund,
Kun Hu,
Judith Douglas,
Christian Thoens,
Bernd Appel,
Annemarie Käsbohrer and
Matthias Filter
PLOS Computational Biology, 2014, vol. 10, issue 7, 1-10
Abstract:
Foodborne disease outbreaks of recent years demonstrate that due to increasingly interconnected supply chains these type of crisis situations have the potential to affect thousands of people, leading to significant healthcare costs, loss of revenue for food companies, and—in the worst cases—death. When a disease outbreak is detected, identifying the contaminated food quickly is vital to minimize suffering and limit economic losses. Here we present a likelihood-based approach that has the potential to accelerate the time needed to identify possibly contaminated food products, which is based on exploitation of food products sales data and the distribution of foodborne illness case reports. Using a real world food sales data set and artificially generated outbreak scenarios, we show that this method performs very well for contamination scenarios originating from a single “guilty” food product. As it is neither always possible nor necessary to identify the single offending product, the method has been extended such that it can be used as a binary classifier. With this extension it is possible to generate a set of potentially “guilty” products that contains the real outbreak source with very high accuracy. Furthermore we explore the patterns of food distributions that lead to “hard-to-identify” foods, the possibility of identifying these food groups a priori, and the extent to which the likelihood-based method can be used to quantify uncertainty. We find that high spatial correlation of sales data between products may be a useful indicator for “hard-to-identify” products.Author Summary: Response to foodborne disease outbreaks is complicated by globalization of our food supply chains. Rapid identification of contaminated products is essential to limit the damage caused by foodborne disease. Worldwide, foodborne disease outbreaks are responsible for $9B a year in medical costs and over $75B in economic losses. Yet relevant data required to accelerate the identification of suspicious food already exists as part of the inventory control systems used by retailers and distributors today. Combining this retail data with public health case reports has the potential to hasten outbreak investigations and provide public health investigators with better information on suspected products to test. This paper demonstrates the feasibility of the principle and efficiency of this approach. Based on these findings it can be concluded that in foodborne disease outbreaks retail data could be used to speed and target public health investigations and consequently reduce numbers of sick/dead people as well as reduce economic losses to the industry.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003692 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03692&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003692
DOI: 10.1371/journal.pcbi.1003692
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().