Characterizing the Impact of Category Uncertainty on Human Auditory Categorization Behavior
Adam M Gifford,
Yale E Cohen and
Alan A Stocker
PLOS Computational Biology, 2014, vol. 10, issue 7, 1-15
Abstract:
Categorization is an important cognitive process. However, the correct categorization of a stimulus is often challenging because categories can have overlapping boundaries. Whereas perceptual categorization has been extensively studied in vision, the analogous phenomenon in audition has yet to be systematically explored. Here, we test whether and how human subjects learn to use category distributions and prior probabilities, as well as whether subjects employ an optimal decision strategy when making auditory-category decisions. We asked subjects to classify the frequency of a tone burst into one of two overlapping, uniform categories according to the perceived tone frequency. We systematically varied the prior probability of presenting a tone burst with a frequency originating from one versus the other category. Most subjects learned these changes in prior probabilities early in testing and used this information to influence categorization. We also measured each subject's frequency-discrimination thresholds (i.e., their sensory uncertainty levels). We tested each subject's average behavior against variations of a Bayesian model that either led to optimal or sub-optimal decision behavior (i.e. probability matching). In both predicting and fitting each subject's average behavior, we found that probability matching provided a better account of human decision behavior. The model fits confirmed that subjects were able to learn category prior probabilities and approximate forms of the category distributions. Finally, we systematically explored the potential ways that additional noise sources could influence categorization behavior. We found that an optimal decision strategy can produce probability-matching behavior if it utilized non-stationary category distributions and prior probabilities formed over a short stimulus history. Our work extends previous findings into the auditory domain and reformulates the issue of categorization in a manner that can help to interpret the results of previous research within a generative framework.Author Summary: Categorization is an important cognitive process that allows us to simplify, extract meaning from, and respond to objects in the sensory environment. However, categorization is complicated because an object can belong to multiple categories. Thus, to inform our categorical judgments, we must make use of prior information. Given the importance of categorization, we hypothesized that humans utilize optimal strategies for making categorical judgments that allow us to minimize categorization errors. We found, though, that whereas subjects used prior information (i.e., category prior probability), they were sub-optimal in their categorization behavior. This seems to be common in other perceptual and cognitive tasks as well. We then explored the bases for this sub-optimal behavior and found that it can be consistent with an optimal strategy if we assume that subjects have trial-by-trial noise in components of the judgment process. This work extends previous similar findings into the field of auditory categorization and provides a means to reinterpret previous results.
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003715 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03715&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003715
DOI: 10.1371/journal.pcbi.1003715
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().