Collective Learning and Optimal Consensus Decisions in Social Animal Groups
Albert B Kao,
Noam Miller,
Colin Torney,
Andrew Hartnett and
Iain D Couzin
PLOS Computational Biology, 2014, vol. 10, issue 8, 1-11
Abstract:
Learning has been studied extensively in the context of isolated individuals. However, many organisms are social and consequently make decisions both individually and as part of a collective. Reaching consensus necessarily means that a single option is chosen by the group, even when there are dissenting opinions. This decision-making process decouples the otherwise direct relationship between animals' preferences and their experiences (the outcomes of decisions). Instead, because an individual's learned preferences influence what others experience, and therefore learn about, collective decisions couple the learning processes between social organisms. This introduces a new, and previously unexplored, dynamical relationship between preference, action, experience and learning. Here we model collective learning within animal groups that make consensus decisions. We reveal how learning as part of a collective results in behavior that is fundamentally different from that learned in isolation, allowing grouping organisms to spontaneously (and indirectly) detect correlations between group members' observations of environmental cues, adjust strategy as a function of changing group size (even if that group size is not known to the individual), and achieve a decision accuracy that is very close to that which is provably optimal, regardless of environmental contingencies. Because these properties make minimal cognitive demands on individuals, collective learning, and the capabilities it affords, may be widespread among group-living organisms. Our work emphasizes the importance and need for theoretical and experimental work that considers the mechanism and consequences of learning in a social context.Author Summary: Learning is ubiquitous among animal species, allowing individuals to adjust their behavior in response to their environment to improve their chances of survival and reproduction. However, while many animals live and make decisions within social groups, it is not well understood how associative learning functions within a social context. We describe an empirically derived model of collective learning and compare the learned performance of animals within groups to the optimal behavior for a wide range of environmental conditions and group sizes. We find that the learning rules derived from experiments with individual animals readily generalize to a social context, and these relatively simple rules result in behavior that is close to optimal, even when individuals know neither the size of their group nor the properties of environmental cues. Individuals that learn in isolation and subsequently join together as a group make substantially worse decisions. These results demonstrate the importance of learning within a collective context and highlight the need for experimental work to investigate the role of collective learning in enhancing decision accuracy in animal groups.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003762 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03762&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003762
DOI: 10.1371/journal.pcbi.1003762
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().