Multiscale Approach to the Determination of the Photoactive Yellow Protein Signaling State Ensemble
Mary A. Rohrdanz,
Wenwei Zheng,
Bradley Lambeth,
Jocelyne Vreede and
Cecilia Clementi
PLOS Computational Biology, 2014, vol. 10, issue 10, 1-10
Abstract:
The nature of the optical cycle of photoactive yellow protein (PYP) makes its elucidation challenging for both experiment and theory. The long transition times render conventional simulation methods ineffective, and yet the short signaling-state lifetime makes experimental data difficult to obtain and interpret. Here, through an innovative combination of computational methods, a prediction and analysis of the biological signaling state of PYP is presented. Coarse-grained modeling and locally scaled diffusion map are first used to obtain a rough bird's-eye view of the free energy landscape of photo-activated PYP. Then all-atom reconstruction, followed by an enhanced sampling scheme; diffusion map-directed-molecular dynamics are used to focus in on the signaling-state region of configuration space and obtain an ensemble of signaling state structures. To the best of our knowledge, this is the first time an all-atom reconstruction from a coarse grained model has been performed in a relatively unexplored region of molecular configuration space. We compare our signaling state prediction with previous computational and more recent experimental results, and the comparison is favorable, which validates the method presented. This approach provides additional insight to understand the PYP photo cycle, and can be applied to other systems for which more direct methods are impractical.Author Summary: Many protein systems of biological interest undergo dynamical changes on a time scale too long to be modeled using standard computational methods. One example is photoactive yellow protein (PYP), found in several bacterial species. Blue light, potentially harmful for DNA, triggers several structural changes in PYP, eventually resulting in a conformation that changes the swimming behavior of bacteria. This conformation is difficult to investigate, as it is too short lived. In addition, understanding this “signaling state” is computationally difficult because of the long timescale of the transition. We overcome this by constructing a coarse-grained model to rapidly induce transitions to the signaling state. We then reconstruct and further sample the all-atom configurations from these coarse-grained representations. Our results are consistent with all available experimental and computational evidence.
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003797 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03797&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003797
DOI: 10.1371/journal.pcbi.1003797
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().