EconPapers    
Economics at your fingertips  
 

Live Imaging-Based Model Selection Reveals Periodic Regulation of the Stochastic G1/S Phase Transition in Vertebrate Axial Development

Mayu Sugiyama, Takashi Saitou, Hiroshi Kurokawa, Asako Sakaue-Sawano, Takeshi Imamura, Atsushi Miyawaki and Tadahiro Iimura

PLOS Computational Biology, 2014, vol. 10, issue 12, 1-16

Abstract: In multicellular organism development, a stochastic cellular response is observed, even when a population of cells is exposed to the same environmental conditions. Retrieving the spatiotemporal regulatory mode hidden in the heterogeneous cellular behavior is a challenging task. The G1/S transition observed in cell cycle progression is a highly stochastic process. By taking advantage of a fluorescence cell cycle indicator, Fucci technology, we aimed to unveil a hidden regulatory mode of cell cycle progression in developing zebrafish. Fluorescence live imaging of Cecyil, a zebrafish line genetically expressing Fucci, demonstrated that newly formed notochordal cells from the posterior tip of the embryonic mesoderm exhibited the red (G1) fluorescence signal in the developing notochord. Prior to their initial vacuolation, these cells showed a fluorescence color switch from red to green, indicating G1/S transitions. This G1/S transition did not occur in a synchronous manner, but rather exhibited a stochastic process, since a mixed population of red and green cells was always inserted between newly formed red (G1) notochordal cells and vacuolating green cells. We termed this mixed population of notochordal cells, the G1/S transition window. We first performed quantitative analyses of live imaging data and a numerical estimation of the probability of the G1/S transition, which demonstrated the existence of a posteriorly traveling regulatory wave of the G1/S transition window. To obtain a better understanding of this regulatory mode, we constructed a mathematical model and performed a model selection by comparing the results obtained from the models with those from the experimental data. Our analyses demonstrated that the stochastic G1/S transition window in the notochord travels posteriorly in a periodic fashion, with doubled the periodicity of the neighboring paraxial mesoderm segmentation. This approach may have implications for the characterization of the pathophysiological tissue growth mode.Author Summary: Cell cycle progression is considered to involve a cellular time-counting machinery for proper morphogenesis and patterning of tissues. Therefore, it is important to understand the regulatory mode of cell cycle progression during physiological and pathological tissue growth, which will benefit tissue engineering therapy and tumor diagnosis. Since cell cycle progression is a highly variable process, it is a challenging task to retrieve the spatiotemporal regulatory mode hidden in heterogeneous cellular behavior. To overcome this issue, we took advantage of live imaging analyses with a fluorescence cell cycle indicator, Fucci technology, and mathematical modeling of developing zebrafish fish embryo as a model system of growing tissue. Our result demonstrated that the developmental growth of embryonic axis progressed in a rhythmic fashion. The presented analyses will benefit the characterization of the regulatory mode of tissue growth, in both physiological and pathological development, such as that involving tumor formation, thus may contribute to cancer diagnosis.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003957 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03957&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003957

DOI: 10.1371/journal.pcbi.1003957

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1003957