EconPapers    
Economics at your fingertips  
 

Sliding of Proteins Non-specifically Bound to DNA: Brownian Dynamics Studies with Coarse-Grained Protein and DNA Models

Tadashi Ando and Jeffrey Skolnick

PLOS Computational Biology, 2014, vol. 10, issue 12, 1-10

Abstract: DNA binding proteins efficiently search for their cognitive sites on long genomic DNA by combining 3D diffusion and 1D diffusion (sliding) along the DNA. Recent experimental results and theoretical analyses revealed that the proteins show a rotation-coupled sliding along DNA helical pitch. Here, we performed Brownian dynamics simulations using newly developed coarse-grained protein and DNA models for evaluating how hydrodynamic interactions between the protein and DNA molecules, binding affinity of the protein to DNA, and DNA fluctuations affect the one dimensional diffusion of the protein on the DNA. Our results indicate that intermolecular hydrodynamic interactions reduce 1D diffusivity by 30%. On the other hand, structural fluctuations of DNA give rise to steric collisions between the CG-proteins and DNA, resulting in faster 1D sliding of the protein. Proteins with low binding affinities consistent with experimental estimates of non-specific DNA binding show hopping along the CG-DNA. This hopping significantly increases sliding speed. These simulation studies provide additional insights into the mechanism of how DNA binding proteins find their target sites on the genome.Author Summary: DNA binding proteins efficiently search for their cognitive sites on long genomic DNA in cells to control biological activities. Recent experimental studies have revealed that the proteins use not only three-dimensional diffusion, but also one-dimensional diffusion (sliding) on DNA for this search process. For a better understanding of this biological process, we need to elucidate the mechanism of sliding. We report here molecular simulations using newly developed coarse-grained protein and DNA models for elucidating the nature of the sliding motions. Our simulation results show that: 1) hydrodynamic interactions between protein and DNA reduce sliding rate by 30%, 2) structural fluctuations of DNA give rise to steric collisions between proteins and DNA, which facilitate sliding motions, and 3) proteins with low binding affinities to DNA can hop along the DNA, resulting in a significant increase in sliding speed. These simulation studies provide additional insights into the mechanism of how DNA binding proteins find their target sites on the genome.

Date: 2014
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003990 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03990&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003990

DOI: 10.1371/journal.pcbi.1003990

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1003990