A Probabilistic Palimpsest Model of Visual Short-term Memory
Loic Matthey,
Paul M Bays and
Peter Dayan
PLOS Computational Biology, 2015, vol. 11, issue 1, 1-34
Abstract:
Working memory plays a key role in cognition, and yet its mechanisms remain much debated. Human performance on memory tasks is severely limited; however, the two major classes of theory explaining the limits leave open questions about key issues such as how multiple simultaneously-represented items can be distinguished. We propose a palimpsest model, with the occurrent activity of a single population of neurons coding for several multi-featured items. Using a probabilistic approach to storage and recall, we show how this model can account for many qualitative aspects of existing experimental data. In our account, the underlying nature of a memory item depends entirely on the characteristics of the population representation, and we provide analytical and numerical insights into critical issues such as multiplicity and binding. We consider representations in which information about individual feature values is partially separate from the information about binding that creates single items out of multiple features. An appropriate balance between these two types of information is required to capture fully the different types of error seen in human experimental data. Our model provides the first principled account of misbinding errors. We also suggest a specific set of stimuli designed to elucidate the representations that subjects actually employ.Author Summary: Humans can remember several visual items for a few seconds and recall them; however, performance deteriorates surprisingly quickly with the number of items that must be stored. Along with increasingly inaccurate recollection, subjects make association errors, sometimes apparently recalling the wrong item altogether. No current model accounts for these data fully. We discuss a simple model that focuses attention on the population representations that are putatively involved, and thereby on limits to the amount of information that can be stored and recalled. We use theoretical and numerical methods to examine the characteristics and performance of our model.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004003 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04003&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004003
DOI: 10.1371/journal.pcbi.1004003
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().