EconPapers    
Economics at your fingertips  
 

Prioritizing Therapeutics for Lung Cancer: An Integrative Meta-analysis of Cancer Gene Signatures and Chemogenomic Data

Kristen Fortney, Joshua Griesman, Max Kotlyar, Chiara Pastrello, Marc Angeli, Ming Sound-Tsao and Igor Jurisica

PLOS Computational Biology, 2015, vol. 11, issue 3, 1-17

Abstract: Repurposing FDA-approved drugs with the aid of gene signatures of disease can accelerate the development of new therapeutics. A major challenge to developing reliable drug predictions is heterogeneity. Different gene signatures of the same disease or drug treatment often show poor overlap across studies, as a consequence of both biological and technical variability, and this can affect the quality and reproducibility of computational drug predictions. Existing algorithms for signature-based drug repurposing use only individual signatures as input. But for many diseases, there are dozens of signatures in the public domain. Methods that exploit all available transcriptional knowledge on a disease should produce improved drug predictions. Here, we adapt an established meta-analysis framework to address the problem of drug repurposing using an ensemble of disease signatures. Our computational pipeline takes as input a collection of disease signatures, and outputs a list of drugs predicted to consistently reverse pathological gene changes. We apply our method to conduct the largest and most systematic repurposing study on lung cancer transcriptomes, using 21 signatures. We show that scaling up transcriptional knowledge significantly increases the reproducibility of top drug hits, from 44% to 78%. We extensively characterize drug hits in silico, demonstrating that they slow growth significantly in nine lung cancer cell lines from the NCI-60 collection, and identify CALM1 and PLA2G4A as promising drug targets for lung cancer. Our meta-analysis pipeline is general, and applicable to any disease context; it can be applied to improve the results of signature-based drug repurposing by leveraging the large number of disease signatures in the public domain.Author Summary: Computer algorithms that find new uses for known drugs can accelerate the development of new therapies for many diseases, including cancer. One promising strategy is to identify drugs that, at the transcriptional level, reverse the gene expression signature of a disease. A major difficulty with this strategy is variability: different gene expression signatures of the same disease or drug treatment can show poor overlap across studies. Since existing algorithms analyze one signature at a time, this means that the drug candidates they identify may reverse some signatures of a disease but not others. For many diseases, dozens of signatures from different labs are now available in online databases. Combining knowledge across all signatures should lead to better drug predictions. Here, we design a meta-analysis pipeline that takes in a large set of disease signatures and then identifies drugs that consistently reverse deleterious gene changes. We apply our method to find new drug candidates for lung cancer, using 21 signatures. We show that our meta-analysis pipeline increases the reproducibility of top drug hits, and then extensively characterize new lung cancer drug candidates in silico.

Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004068 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04068&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004068

DOI: 10.1371/journal.pcbi.1004068

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1004068