Improved Estimation and Interpretation of Correlations in Neural Circuits
Dimitri Yatsenko,
Krešimir Josić,
Alexander S Ecker,
Emmanouil Froudarakis,
R James Cotton and
Andreas S Tolias
PLOS Computational Biology, 2015, vol. 11, issue 3, 1-28
Abstract:
Ambitious projects aim to record the activity of ever larger and denser neuronal populations in vivo. Correlations in neural activity measured in such recordings can reveal important aspects of neural circuit organization. However, estimating and interpreting large correlation matrices is statistically challenging. Estimation can be improved by regularization, i.e. by imposing a structure on the estimate. The amount of improvement depends on how closely the assumed structure represents dependencies in the data. Therefore, the selection of the most efficient correlation matrix estimator for a given neural circuit must be determined empirically. Importantly, the identity and structure of the most efficient estimator informs about the types of dominant dependencies governing the system. We sought statistically efficient estimators of neural correlation matrices in recordings from large, dense groups of cortical neurons. Using fast 3D random-access laser scanning microscopy of calcium signals, we recorded the activity of nearly every neuron in volumes 200 μm wide and 100 μm deep (150–350 cells) in mouse visual cortex. We hypothesized that in these densely sampled recordings, the correlation matrix should be best modeled as the combination of a sparse graph of pairwise partial correlations representing local interactions and a low-rank component representing common fluctuations and external inputs. Indeed, in cross-validation tests, the covariance matrix estimator with this structure consistently outperformed other regularized estimators. The sparse component of the estimate defined a graph of interactions. These interactions reflected the physical distances and orientation tuning properties of cells: The density of positive ‘excitatory’ interactions decreased rapidly with geometric distances and with differences in orientation preference whereas negative ‘inhibitory’ interactions were less selective. Because of its superior performance, this ‘sparse+latent’ estimator likely provides a more physiologically relevant representation of the functional connectivity in densely sampled recordings than the sample correlation matrix.Author Summary: It is now possible to record the spiking activity of hundreds of neurons at the same time. A meaningful statistical description of the collective activity of these neural populations—their ‘functional connectivity’—is a forefront challenge in neuroscience. We addressed this problem by identifying statistically efficient estimators of correlation matrices of the spiking activity of neural populations. Various underlying processes may reflect differently on the structure of the correlation matrix: Correlations due to common network fluctuations or external inputs are well estimated by low-rank representations, whereas correlations arising from linear interactions between pairs of neurons are well approximated by their pairwise partial correlations. In our data obtained from fast 3D two-photon imaging of calcium signals of large and dense groups of neurons in mouse visual cortex, the best estimation performance was attained by decomposing the correlation matrix into a sparse network of partial correlations (‘interactions’) combined with a low-rank component. The inferred interactions were both positive (‘excitatory’) and negative (‘inhibitory’) and reflected the spatial organization and orientation preferences of the interacting cells. We propose that the most efficient among many estimators provides a more informative picture of the functional connectivity than previous analyses of neural correlations.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004083 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04083&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004083
DOI: 10.1371/journal.pcbi.1004083
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().