EconPapers    
Economics at your fingertips  
 

Co-evolutionary Dynamics of Collective Action with Signaling for a Quorum

Jorge M Pacheco, Vítor V Vasconcelos, Francisco C Santos and Brian Skyrms

PLOS Computational Biology, 2015, vol. 11, issue 2, 1-12

Abstract: Collective signaling for a quorum is found in a wide range of organisms that face collective action problems whose successful solution requires the participation of some quorum of the individuals present. These range from humans, to social insects, to bacteria. The mechanisms involved, the quorum required, and the size of the group may vary. Here we address the general question of the evolution of collective signaling at a high level of abstraction. We investigate the evolutionary dynamics of a population engaging in a signaling N-person game theoretic model. Parameter settings allow for loners and cheaters, and for costly or costless signals. We find a rich dynamics, showing how natural selection, operating on a population of individuals endowed with the simplest strategies, is able to evolve a costly signaling system that allows individuals to respond appropriately to different states of Nature. Signaling robustly promotes cooperative collective action, in particular when coordinated action is most needed and difficult to achieve. Two different signaling systems may emerge depending on Nature’s most prevalent states.Author Summary: From humans to social insects and bacteria, decision-making is often influenced by some form of collective signaling, be it quorum, information exchange, pledges or announcements. Here we investigate how such signaling systems evolve when collective action entails a public good, and how meanings co-evolve with individual choices, given Nature’s most prevalent states. We find a rich scenario, showing how natural selection is able to evolve a costly quorum signaling system that allows individuals to coordinate their action so as to provide the appropriate response to different states of Nature. We show that signaling robustly and selectively promotes cooperative collective action when coordinated action is most needed. In light of our results, and despite the complexity that collective action relying on quorum signaling may entail, it is not so surprising how signaling is a ubiquitous property of the living world.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004101 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04101&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004101

DOI: 10.1371/journal.pcbi.1004101

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1004101