EconPapers    
Economics at your fingertips  
 

Evolving Nutritional Strategies in the Presence of Competition: A Geometric Agent-Based Model

Alistair M Senior, Michael A Charleston, Mathieu Lihoreau, Jerome Buhl, David Raubenheimer and Stephen J Simpson

PLOS Computational Biology, 2015, vol. 11, issue 3, 1-24

Abstract: Access to nutrients is a key factor governing development, reproduction and ultimately fitness. Within social groups, contest-competition can fundamentally affect nutrient access, potentially leading to reproductive asymmetry among individuals. Previously, agent-based models have been combined with the Geometric Framework of nutrition to provide insight into how nutrition and social interactions affect one another. Here, we expand this modelling approach by incorporating evolutionary algorithms to explore how contest-competition over nutrient acquisition might affect the evolution of animal nutritional strategies. Specifically, we model tolerance of nutrient excesses and deficits when ingesting nutritionally imbalanced foods, which we term ‘nutritional latitude’; a higher degree of nutritional latitude constitutes a higher tolerance of nutritional excess and deficit. Our results indicate that a transition between two alternative strategies occurs at moderate to high levels of competition. When competition is low, individuals display a low level of nutritional latitude and regularly switch foods in search of an optimum. When food is scarce and contest-competition is intense, high nutritional latitude appears optimal, and individuals continue to consume an imbalanced food for longer periods before attempting to switch to an alternative. However, the relative balance of nutrients within available foods also strongly influences at what levels of competition, if any, transitions between these two strategies occur. Our models imply that competition combined with reproductive skew in social groups can play a role in the evolution of diet breadth. We discuss how the integration of agent-based, nutritional and evolutionary modelling may be applied in future studies to further understand the evolution of nutritional strategies across social and ecological contexts.Author Summary: Getting enough nutrients and at the right balance is among the primary challenges that an animal has to overcome. Animals that live in groups have the added complexity of competition among individuals over foods. We used an evolutionary simulation to explore how the intensity of such competition interacts with the composition of available foods to influence the strategies that an animal should use to meet its nutritional requirements. We found that two general strategies emerged. When competition was weak, animals that only locate and consume foods with an ideal balance of nutrients were favoured. However, when competition was strong, a strategy with which animals meet their nutritional requirements by eating large amounts of nutritionally imbalanced, but complementary, foods was optimal. These results implicate a role for competition for foods between animals within social groups in shaping dietary breadth. Evolutionary simulations such as those described here are important for understanding how different species evolve to meet their nutritional requirements in a range of ecological circumstances.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004111 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04111&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004111

DOI: 10.1371/journal.pcbi.1004111

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1004111