EconPapers    
Economics at your fingertips  
 

Intra-Tumour Signalling Entropy Determines Clinical Outcome in Breast and Lung Cancer

Christopher R S Banerji, Simone Severini, Carlos Caldas and Andrew E Teschendorff

PLOS Computational Biology, 2015, vol. 11, issue 3, 1-23

Abstract: The cancer stem cell hypothesis, that a small population of tumour cells are responsible for tumorigenesis and cancer progression, is becoming widely accepted and recent evidence has suggested a prognostic and predictive role for such cells. Intra-tumour heterogeneity, the diversity of the cancer cell population within the tumour of an individual patient, is related to cancer stem cells and is also considered a potential prognostic indicator in oncology. The measurement of cancer stem cell abundance and intra-tumour heterogeneity in a clinically relevant manner however, currently presents a challenge. Here we propose signalling entropy, a measure of signalling pathway promiscuity derived from a sample’s genome-wide gene expression profile, as an estimate of the stemness of a tumour sample. By considering over 500 mixtures of diverse cellular expression profiles, we reveal that signalling entropy also associates with intra-tumour heterogeneity. By analysing 3668 breast cancer and 1692 lung adenocarcinoma samples, we further demonstrate that signalling entropy correlates negatively with survival, outperforming leading clinical gene expression based prognostic tools. Signalling entropy is found to be a general prognostic measure, valid in different breast cancer clinical subgroups, as well as within stage I lung adenocarcinoma. We find that its prognostic power is driven by genes involved in cancer stem cells and treatment resistance. In summary, by approximating both stemness and intra-tumour heterogeneity, signalling entropy provides a powerful prognostic measure across different epithelial cancers.Author Summary: The Cancer Stem Cell (CSC) hypothesis, the idea that a small population of tumour cells have the capacity to seed and grow the tumour, and intra-tumour heterogeneity, the diversity of the cancer cell population within the tumour of an individual patient, have long been considered the basis of potential prognostic indicators in oncology. The identification of CSC based expression signatures and the measurement of intra-tumour heterogeneity, for an assessment of prognostic power in a clinically relevant manner, however, currently presents a challenge. Most proposed methodologies require the collection of new data sets and thus are limited in sample size, making them difficult to validate. Here we consider signalling entropy, a measure of signalling pathway promiscuity, as a means of quantifying the stemness and heterogeneity of any given cancer sample, applicable to publicly available data sets. By considering over 5300 primary tumour samples from both breast and lung cancer patients, we here demonstrate that signalling entropy provides a more robust and general prognostic measure than other leading clinical prognostic indicators.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004115 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04115&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004115

DOI: 10.1371/journal.pcbi.1004115

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1004115