EconPapers    
Economics at your fingertips  
 

Twisting Right to Left: A…A Mismatch in a CAG Trinucleotide Repeat Overexpansion Provokes Left-Handed Z-DNA Conformation

Noorain Khan, Narendar Kolimi and Thenmalarchelvi Rathinavelan

PLOS Computational Biology, 2015, vol. 11, issue 4, 1-21

Abstract: Conformational polymorphism of DNA is a major causative factor behind several incurable trinucleotide repeat expansion disorders that arise from overexpansion of trinucleotide repeats located in coding/non-coding regions of specific genes. Hairpin DNA structures that are formed due to overexpansion of CAG repeat lead to Huntington’s disorder and spinocerebellar ataxias. Nonetheless, DNA hairpin stem structure that generally embraces B-form with canonical base pairs is poorly understood in the context of periodic noncanonical A…A mismatch as found in CAG repeat overexpansion. Molecular dynamics simulations on DNA hairpin stems containing A…A mismatches in a CAG repeat overexpansion show that A…A dictates local Z-form irrespective of starting glycosyl conformation, in sharp contrast to canonical DNA duplex. Transition from B-to-Z is due to the mechanistic effect that originates from its pronounced nonisostericity with flanking canonical base pairs facilitated by base extrusion, backbone and/or base flipping. Based on these structural insights we envisage that such an unusual DNA structure of the CAG hairpin stem may have a role in disease pathogenesis. As this is the first study that delineates the influence of a single A…A mismatch in reversing DNA helicity, it would further have an impact on understanding DNA mismatch repair.Author Summary: When a set of 3 nucleotides in a DNA sequence repeats beyond a certain number, it leads to incurable neurological or neuromuscular disorders. Such DNA sequences tend to form unusual DNA structures comprising of base pairing schemes different from the canonical A…T/G…C base pairs. Influence of such unusual base pairing on the overall 3-dimensional structure of DNA and its impact on the pathogenesis of disorder is not well understood. CAG repeat overexpansion that leads to Huntington’s disorder and several spinocerebellar ataxias forms noncanonical A…A base pair in between canonical C…G and G…C base pairs. However, no detailed structural information is available on the influence of an A…A mismatch on a DNA structure under any sequence context. Here, we have shown for the first time that A…A base pairing in a CAG repeat provokes the formation of left-handed Z-DNA due to the pronounced structural dissimilarity of A…A base pair with G…C base pair, leading to periodic B-Z junction. Thus, these results suggest that formation of periodic B-Z junction may be one of the molecular bases for CAG repeat instability.

Date: 2015
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004162 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04162&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004162

DOI: 10.1371/journal.pcbi.1004162

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1004162