Dual Dimensionality Reduction Reveals Independent Encoding of Motor Features in a Muscle Synergy for Insect Flight Control
Simon Sponberg,
Thomas L Daniel and
Adrienne L Fairhall
PLOS Computational Biology, 2015, vol. 11, issue 4, 1-23
Abstract:
What are the features of movement encoded by changing motor commands? Do motor commands encode movement independently or can they be represented in a reduced set of signals (i.e. synergies)? Motor encoding poses a computational and practical challenge because many muscles typically drive movement, and simultaneous electrophysiology recordings of all motor commands are typically not available. Moreover, during a single locomotor period (a stride or wingstroke) the variation in movement may have high dimensionality, even if only a few discrete signals activate the muscles. Here, we apply the method of partial least squares (PLS) to extract the encoded features of movement based on the cross-covariance of motor signals and movement. PLS simultaneously decomposes both datasets and identifies only the variation in movement that relates to the specific muscles of interest. We use this approach to explore how the main downstroke flight muscles of an insect, the hawkmoth Manduca sexta, encode torque during yaw turns. We simultaneously record muscle activity and turning torque in tethered flying moths experiencing wide-field visual stimuli. We ask whether this pair of muscles acts as a muscle synergy (a single linear combination of activity) consistent with their hypothesized function of producing a left-right power differential. Alternatively, each muscle might individually encode variation in movement. We show that PLS feature analysis produces an efficient reduction of dimensionality in torque variation within a wingstroke. At first, the two muscles appear to behave as a synergy when we consider only their wingstroke-averaged torque. However, when we consider the PLS features, the muscles reveal independent encoding of torque. Using these features we can predictably reconstruct the variation in torque corresponding to changes in muscle activation. PLS-based feature analysis provides a general two-sided dimensionality reduction that reveals encoding in high dimensional sensory or motor transformations.Author Summary: Understanding movement control is challenging because the brains of nearly all animals send motor command signals to many muscles, and these signals produce complex movements. In studying animal movement, one cannot always record all the motor commands an animal uses or know all the ways in which movement varies in response. A combined approach is necessary to find the relevant patterns: the changes in movement that correspond to changes in the recorded motor commands. Techniques exist to identify simple patterns in either the motor commands or the movements, but in this paper we develop an approach that identifies patterns in both simultaneously. We use this technique to understand how agile flying insects control aerial turns. The two main downstroke muscles of moths are thought to produce turns by creating a power difference between the left and right wings. The moth’s brain may only need to specify the difference in activation between the two muscles. We discover that moth’s brain actually has independent control over each muscle, and this separate control increases the moth’s ability to adjust turning within a single wingstroke. Our computational approach reveals sophisticated patterns of movement processing even in the small nervous systems of insects.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004168 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04168&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004168
DOI: 10.1371/journal.pcbi.1004168
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().