Energy Efficient Sparse Connectivity from Imbalanced Synaptic Plasticity Rules
João Sacramento,
Andreas Wichert and
Mark C W van Rossum
PLOS Computational Biology, 2015, vol. 11, issue 6, 1-24
Abstract:
It is believed that energy efficiency is an important constraint in brain evolution. As synaptic transmission dominates energy consumption, energy can be saved by ensuring that only a few synapses are active. It is therefore likely that the formation of sparse codes and sparse connectivity are fundamental objectives of synaptic plasticity. In this work we study how sparse connectivity can result from a synaptic learning rule of excitatory synapses. Information is maximised when potentiation and depression are balanced according to the mean presynaptic activity level and the resulting fraction of zero-weight synapses is around 50%. However, an imbalance towards depression increases the fraction of zero-weight synapses without significantly affecting performance. We show that imbalanced plasticity corresponds to imposing a regularising constraint on the L1-norm of the synaptic weight vector, a procedure that is well-known to induce sparseness. Imbalanced plasticity is biophysically plausible and leads to more efficient synaptic configurations than a previously suggested approach that prunes synapses after learning. Our framework gives a novel interpretation to the high fraction of silent synapses found in brain regions like the cerebellum.Author Summary: Recent estimates point out that a large part of the energetic budget of the mammalian cortex is spent in transmitting signals between neurons across synapses. Despite this, studies of learning and memory do not usually take energy efficiency into account. In this work we address the canonical computational problem of storing memories with synaptic plasticity. However, instead of optimising solely for information capacity, we search for energy efficient solutions. This implies that the number of functional synapses needs to be small (sparse connectivity) while maintaining high information. We suggest imbalanced plasticity, a learning regime where net depression is stronger than potentiation, as a simple and plausible means to learn more efficient neural circuits. Our framework gives a novel interpretation to the high fraction of silent synapses found in brain regions like the cerebellum.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004265 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04265&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004265
DOI: 10.1371/journal.pcbi.1004265
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().