EconPapers    
Economics at your fingertips  
 

Behavioural Contagion Explains Group Cohesion in a Social Crustacean

Pierre Broly and Jean-Louis Deneubourg

PLOS Computational Biology, 2015, vol. 11, issue 6, 1-18

Abstract: In gregarious species, social interactions maintain group cohesion and the associated adaptive values of group living. The understanding of mechanisms leading to group cohesion is essential for understanding the collective dynamics of groups and the spatio-temporal distribution of organisms in environment. In this view, social aggregation in terrestrial isopods represents an interesting model due to its recurrence both in the field and in the laboratory. In this study, and under a perturbation context, we experimentally tested the stability of groups of woodlice according to group size and time spent in group. Our results indicate that the response to the disturbance of groups decreases with increases in these two variables. Models neglecting social effects cannot reproduce experimental data, attesting that cohesion of aggregation in terrestrial isopods is partly governed by a social effect. In particular, models involving calmed and excited individuals and a social transition between these two behavioural states more accurately reproduced our experimental data. Therefore, we concluded that group cohesion (and collective response to stimulus) in terrestrial isopods is governed by a transitory resting state under the influence of density of conspecifics and time spent in group. Lastly, we discuss the nature of direct or indirect interactions possibly implicated.Author Summary: Terrestrial isopods, commonly named woodlice or pill bugs, are commonly distributed soil-dwelling arthropods, particularly important in soils as macro-decomposers of leaf litter. Many species of woodlice are synanthropic and, for this reason, are easily observable in gardens, urban parks or composts. Harmless organisms and easy to raise, the woodlice represent an excellent pedagogical model in many schools, so that children may perform on these organisms various behavioral tests such as light escape or introduction to social behaviors. Indeed, woodlice are gregarious species and exhibit long phases of aggregation. Here, we propose a model based on simple rules involving calmed and excited individuals and a social transition between these two behavioural states to explain group cohesion in woodlice. This contagion model well reproduces our experimental results. Our approach provides important clues for the understanding of how social group effects and collective mechanisms may govern the stability and dispersion of aggregates in gregarious arthropods.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004290 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04290&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004290

DOI: 10.1371/journal.pcbi.1004290

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1004290