Maintaining Homeostasis by Decision-Making
Christoph W Korn and
Dominik R Bach
PLOS Computational Biology, 2015, vol. 11, issue 5, 1-19
Abstract:
Living organisms need to maintain energetic homeostasis. For many species, this implies taking actions with delayed consequences. For example, humans may have to decide between foraging for high-calorie but hard-to-get, and low-calorie but easy-to-get food, under threat of starvation. Homeostatic principles prescribe decisions that maximize the probability of sustaining appropriate energy levels across the entire foraging trajectory. Here, predictions from biological principles contrast with predictions from economic decision-making models based on maximizing the utility of the endpoint outcome of a choice. To empirically arbitrate between the predictions of biological and economic models for individual human decision-making, we devised a virtual foraging task in which players chose repeatedly between two foraging environments, lost energy by the passage of time, and gained energy probabilistically according to the statistics of the environment they chose. Reaching zero energy was framed as starvation. We used the mathematics of random walks to derive endpoint outcome distributions of the choices. This also furnished equivalent lotteries, presented in a purely economic, casino-like frame, in which starvation corresponded to winning nothing. Bayesian model comparison showed that—in both the foraging and the casino frames—participants’ choices depended jointly on the probability of starvation and the expected endpoint value of the outcome, but could not be explained by economic models based on combinations of statistical moments or on rank-dependent utility. This implies that under precisely defined constraints biological principles are better suited to explain human decision-making than economic models based on endpoint utility maximization.Author Summary: Common decision-making models arise from firm axiomatic foundations but do not account for a variety of empirically observed choice patterns such as risk attitudes in the face of high-impact events. Here, we argue that one reason for this mismatch between theory and data lies in the neglect of basic biological principles such as metabolic homeostasis. We use Bayesian model comparison to show that models based on homeostatic considerations explain human decisions better than classic economic models—both in a novel virtual foraging task and in standard economic gambles. Specifically, we show that in line with the principle of homeostasis human choice minimizes the probability of reaching a lower bound. Our results highlight that predictions from biological principles provide simple, testable, and ecologically rational explanations for apparent biases in decision-making.
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004301 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04301&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004301
DOI: 10.1371/journal.pcbi.1004301
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().