Unbiased Quantitative Models of Protein Translation Derived from Ribosome Profiling Data
Alexey A Gritsenko,
Marc Hulsman,
Marcel J T Reinders and
Dick de Ridder
PLOS Computational Biology, 2015, vol. 11, issue 8, 1-26
Abstract:
Translation of RNA to protein is a core process for any living organism. While for some steps of this process the effect on protein production is understood, a holistic understanding of translation still remains elusive. In silico modelling is a promising approach for elucidating the process of protein synthesis. Although a number of computational models of the process have been proposed, their application is limited by the assumptions they make. Ribosome profiling (RP), a relatively new sequencing-based technique capable of recording snapshots of the locations of actively translating ribosomes, is a promising source of information for deriving unbiased data-driven translation models. However, quantitative analysis of RP data is challenging due to high measurement variance and the inability to discriminate between the number of ribosomes measured on a gene and their speed of translation. We propose a solution in the form of a novel multi-scale interpretation of RP data that allows for deriving models with translation dynamics extracted from the snapshots. We demonstrate the usefulness of this approach by simultaneously determining for the first time per-codon translation elongation and per-gene translation initiation rates of Saccharomyces cerevisiae from RP data for two versions of the Totally Asymmetric Exclusion Process (TASEP) model of translation. We do this in an unbiased fashion, by fitting the models using only RP data with a novel optimization scheme based on Monte Carlo simulation to keep the problem tractable. The fitted models match the data significantly better than existing models and their predictions show better agreement with several independent protein abundance datasets than existing models. Results additionally indicate that the tRNA pool adaptation hypothesis is incomplete, with evidence suggesting that tRNA post-transcriptional modifications and codon context may play a role in determining codon elongation rates.Author Summary: Translation, the process of synthesizing proteins from mRNA templates, is an essential biological process in all living organisms. A better understanding of this process will have ramifications in various fields—from gene regulation, disease understanding and medicine to biotechnology and synthetic biology. Nonetheless, a holistic understanding of the processes remains elusive, making computational modelling a promising approach for studying it. However, accurate modelling of translation is challenging due to many assumptions made by such models and due to the sheer number of parameters that need to be specified. Here, we propose to fit models of translation onto ribosome profiling measurements, which record snapshots of the locations of actively translating ribosomes on mRNAs from millions of cells. We develop statistical and computational methods for fitting the Totally Asymmetric Exclusion Process (TASEP) models of translation on these measurements and verify them by deriving highly accurate translation models for the baker’s yeast Saccharomyces cerevisiae, which outperform existing models on independent datasets. We find that fitted elongation rate parameters from the derived models deviate significantly from the widely accepted tRNA pool adaptation hypothesis.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004336 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04336&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004336
DOI: 10.1371/journal.pcbi.1004336
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().