EconPapers    
Economics at your fingertips  
 

Decreasing-Rate Pruning Optimizes the Construction of Efficient and Robust Distributed Networks

Saket Navlakha, Alison L Barth and Ziv Bar-Joseph

PLOS Computational Biology, 2015, vol. 11, issue 7, 1-23

Abstract: Robust, efficient, and low-cost networks are advantageous in both biological and engineered systems. During neural network development in the brain, synapses are massively over-produced and then pruned-back over time. This strategy is not commonly used when designing engineered networks, since adding connections that will soon be removed is considered wasteful. Here, we show that for large distributed routing networks, network function is markedly enhanced by hyper-connectivity followed by aggressive pruning and that the global rate of pruning, a developmental parameter not previously studied by experimentalists, plays a critical role in optimizing network structure. We first used high-throughput image analysis techniques to quantify the rate of pruning in the mammalian neocortex across a broad developmental time window and found that the rate is decreasing over time. Based on these results, we analyzed a model of computational routing networks and show using both theoretical analysis and simulations that decreasing rates lead to more robust and efficient networks compared to other rates. We also present an application of this strategy to improve the distributed design of airline networks. Thus, inspiration from neural network formation suggests effective ways to design distributed networks across several domains.Author Summary: During development of neural circuits in the brain, synapses are massively over-produced and then pruned-back over time. This is a fundamental process that occurs in many brain regions and organisms, yet, despite decades of study of this process, the rate of synapse elimination, and how such rates affect the function and structure of networks, has not been studied. We performed large-scale brain imaging experiments to quantify synapse elimination rates in the developing mouse cortex and found that the rate is decreasing over time (i.e. aggressive elimination occurs early, followed by a longer phase of slow elimination). We show that such rates optimize the efficiency and robustness of distributed routing networks under several models. We also present an application of this strategy to improve the design of airline networks.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004347 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04347&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004347

DOI: 10.1371/journal.pcbi.1004347

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1004347