EconPapers    
Economics at your fingertips  
 

Modeling Inhibitory Interneurons in Efficient Sensory Coding Models

Mengchen Zhu and Christopher J Rozell

PLOS Computational Biology, 2015, vol. 11, issue 7, 1-22

Abstract: There is still much unknown regarding the computational role of inhibitory cells in the sensory cortex. While modeling studies could potentially shed light on the critical role played by inhibition in cortical computation, there is a gap between the simplicity of many models of sensory coding and the biological complexity of the inhibitory subpopulation. In particular, many models do not respect that inhibition must be implemented in a separate subpopulation, with those inhibitory interneurons having a diversity of tuning properties and characteristic E/I cell ratios. In this study we demonstrate a computational framework for implementing inhibition in dynamical systems models that better respects these biophysical observations about inhibitory interneurons. The main approach leverages recent work related to decomposing matrices into low-rank and sparse components via convex optimization, and explicitly exploits the fact that models and input statistics often have low-dimensional structure that can be exploited for efficient implementations. While this approach is applicable to a wide range of sensory coding models (including a family of models based on Bayesian inference in a linear generative model), for concreteness we demonstrate the approach on a network implementing sparse coding. We show that the resulting implementation stays faithful to the original coding goals while using inhibitory interneurons that are much more biophysically plausible.Author Summary: Cortical function is a result of coordinated interactions between excitatory and inhibitory neural populations. In previous theoretical models of sensory systems, inhibitory neurons are often ignored or modeled too simplistically to contribute to understanding their role in cortical computation. In biophysical reality, inhibition is implemented with interneurons that have different characteristics from the population of excitatory cells. In this study, we propose a computational approach for including inhibition in theoretical models of neural coding in a way that respects several of these important characteristics, such as the relative number of inhibitory cells and the diversity of their response properties. The main idea is that the significant structure of the sensory world is reflected in very structured models of sensory coding, which can then be exploited in the implementation of the model using modern computational techniques. We demonstrate this approach on one specific model of sensory coding (called “sparse coding”) that has been successful at modeling other aspects of sensory cortex.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004353 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04353&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004353

DOI: 10.1371/journal.pcbi.1004353

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1004353