EconPapers    
Economics at your fingertips  
 

Dynamic Integration of Value Information into a Common Probability Currency as a Theory for Flexible Decision Making

Vassilios Christopoulos and Paul R Schrater

PLOS Computational Biology, 2015, vol. 11, issue 9, 1-26

Abstract: Decisions involve two fundamental problems, selecting goals and generating actions to pursue those goals. While simple decisions involve choosing a goal and pursuing it, humans evolved to survive in hostile dynamic environments where goal availability and value can change with time and previous actions, entangling goal decisions with action selection. Recent studies suggest the brain generates concurrent action-plans for competing goals, using online information to bias the competition until a single goal is pursued. This creates a challenging problem of integrating information across diverse types, including both the dynamic value of the goal and the costs of action. We model the computations underlying dynamic decision-making with disparate value types, using the probability of getting the highest pay-off with the least effort as a common currency that supports goal competition. This framework predicts many aspects of decision behavior that have eluded a common explanation.Author Summary: Choosing between alternative options requires assigning and integrating values along a multitude of dimensions. For instance, when buying a car, different cars may vary for their price, quality, fuel economy and more. Solving this problem requires finding a common currency to allow integration of disparate value dimensions. In dynamic decisions, in which the environment changes continuously, this multi-dimensional integration must be updated over time. Despite many years of research, it is still unclear how the brain integrates value information and makes decisions in the presence of competing alternatives. In the current study, we propose a probabilistic theory that allows dynamically integrating value information into a common currency. It builds on successful models in motor control and decision-making. It is comprised of a series of control schemes with each of them attached to an individual goal, generating an optimal action-plan to achieve that goal starting from the current state. The key novelty is the relative desirability computation that integrates good- and action- values to a single dynamic variable that weighs the individual action-plans as a function of state and time. By dynamically integrating value information, our theory models many key results in movement decisions that have previously eluded a common explanation.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004402 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04402&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004402

DOI: 10.1371/journal.pcbi.1004402

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1004402