Dendritic Pooling of Noisy Threshold Processes Can Explain Many Properties of a Collision-Sensitive Visual Neuron
Matthias S Keil
PLOS Computational Biology, 2015, vol. 11, issue 10, 1-17
Abstract:
Power laws describe brain functions at many levels (from biophysics to psychophysics). It is therefore possible that they are generated by similar underlying mechanisms. Previously, the response properties of a collision-sensitive neuron were reproduced by a model which used a power law for scaling its inhibitory input. A common characteristic of such neurons is that they integrate information across a large part of the visual field. Here we present a biophysically plausible model of collision-sensitive neurons with η-like response properties, in which we assume that each information channel is noisy and has a response threshold. Then, an approximative power law is obtained as a result of pooling these channels. We show that with this mechanism one can successfully predict many response characteristics of the Lobula Giant Movement Detector Neuron (LGMD). Moreover, the results depend critically on noise in the inhibitory pathway, but they are fairly robust against noise in the excitatory pathway.Author Summary: Many different animals (from insects to primates) try to escape from collision threats, because it is very possible that the approaching object is a predator. The corresponding neurons in the various nervous systems must therefore detect such threats and signal when it is time to escape. Surprisingly, the neurons of different animals which selectively respond to approaching objects have very similar properties. It is therefore worthwhile to understand their underlying computational principles. A common characteristic of such neurons is that they receive (or integrate) information from the whole visual field. The integration process is carried out by the dendritic tree of the neuron. Here we present a computational model in which we assume that each of the input signals is contaminated by noise, as well as having a response threshold (which has to be crossed in order to evoke a response). Then, dendritic integration approximates a mathematical function (a power law) which is essential in our model for explaining the response characteristics of collision-sensitive neurons. Thus, noise is used in a constructive way for computing collision-sensitive responses. Power laws are furthermore found in many different contexts, and may consequently hint at the presence of noise and thresholds.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004479 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04479&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004479
DOI: 10.1371/journal.pcbi.1004479
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().