The Encoding of Decision Difficulty and Movement Time in the Primate Premotor Cortex
Marina Martinez-Garcia,
Andrea Insabato,
Mario Pannunzi,
Jose L Pardo-Vazquez,
Carlos Acuña and
Gustavo Deco
PLOS Computational Biology, 2015, vol. 11, issue 11, 1-25
Abstract:
Estimating the difficulty of a decision is a fundamental process to elaborate complex and adaptive behaviour. In this paper, we show that the movement time of behaving monkeys performing a decision-making task is correlated with decision difficulty and that the activity of a population of neurons in ventral Premotor cortex correlates with the movement time. Moreover, we found another population of neurons that encodes the discriminability of the stimulus, thereby supplying another source of information about the difficulty of the decision. The activity of neurons encoding the difficulty can be produced by very different computations. Therefore, we show that decision difficulty can be encoded through three different mechanisms: 1. Switch time coding, 2. rate coding and 3. binary coding. This rich representation reflects the basis of different functional aspects of difficulty in the making of a decision and the possible role of difficulty estimation in complex decision scenarios.Author Summary: Understanding how the brain produces complex cognitive functions has been a crucial question since ancient philosophical inquiries. The encoding of decision difficulty in the brain is fundamental for complex and adaptive behaviour, and can provide valuable information in uncertain environments where the future outcome of a choice must be evaluated beforehand. Here we show that neurons in premotor cortex represent the difficulty of a decision using at least three different variables: 1) the time of the neuronal response, 2) the intensity of the neuronal response, 3) the probability of switching from a low activity to a high activity profile. Moreover, we show that, by encoding the time elapsed from the end of the stimulus and commitment to a choice, another set of premotor neurons is able to provide information about the difficulty of the decision. These results show that the brain is implementing heterogeneous neural mechanisms to fulfill a complex cognitive function.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004502 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04502&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004502
DOI: 10.1371/journal.pcbi.1004502
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().