Dynamic Redox Regulation of IL-4 Signaling
Gaurav Dwivedi,
Margaret A Gran,
Pritha Bagchi and
Melissa L Kemp
PLOS Computational Biology, 2015, vol. 11, issue 11, 1-20
Abstract:
Quantifying the magnitude and dynamics of protein oxidation during cell signaling is technically challenging. Computational modeling provides tractable, quantitative methods to test hypotheses of redox mechanisms that may be simultaneously operative during signal transduction. The interleukin-4 (IL-4) pathway, which has previously been reported to induce reactive oxygen species and oxidation of PTP1B, may be controlled by several other putative mechanisms of redox regulation; widespread proteomic thiol oxidation observed via 2D redox differential gel electrophoresis upon IL-4 treatment suggests more than one redox-sensitive protein implicated in this pathway. Through computational modeling and a model selection strategy that relied on characteristic STAT6 phosphorylation dynamics of IL-4 signaling, we identified reversible protein tyrosine phosphatase (PTP) oxidation as the primary redox regulatory mechanism in the pathway. A systems-level model of IL-4 signaling was developed that integrates synchronous pan-PTP oxidation with ROS-independent mechanisms. The model quantitatively predicts the dynamics of IL-4 signaling over a broad range of new redox conditions, offers novel hypotheses about regulation of JAK/STAT signaling, and provides a framework for interrogating putative mechanisms involving receptor-initiated oxidation.Author Summary: Incomplete reduction of oxygen during respiration results in the formation of highly reactive molecules known as reactive oxygen species (ROS) that react indiscriminately with cellular components and adversely affect cellular function. For a long time ROS were thought solely to be undesirable byproducts of respiration. Indeed, high levels of ROS are associated with a number of diseases. Despite these facts, antioxidants, agents that neutralize ROS, have not shown any clinical benefits when used as oral supplements. This paradox is partially explained by discoveries over the last two decades demonstrating that ROS are not always detrimental and may be essential for controlling physiological processes like cell signaling. However, the mechanisms by which ROS react with biomolecules are not well understood. In this work we have combined biological experiments with novel computational methods to identify the most important mechanisms of ROS-mediated regulation in the IL-4 signaling pathway of the immune system. We have also developed a detailed computer model of the IL-4 pathway and its regulation by ROS dependent and independent methods. Our work enhances the understanding of principles underlying regulation of cell signaling by ROS and has potential implications in advancing therapeutic methods targeting ROS and their adverse effects.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004582 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04582&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004582
DOI: 10.1371/journal.pcbi.1004582
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().