EconPapers    
Economics at your fingertips  
 

Distinctive Behaviors of Druggable Proteins in Cellular Networks

Costas Mitsopoulos, Amanda C Schierz, Paul Workman and Bissan Al-Lazikani

PLOS Computational Biology, 2015, vol. 11, issue 12, 1-18

Abstract: The interaction environment of a protein in a cellular network is important in defining the role that the protein plays in the system as a whole, and thus its potential suitability as a drug target. Despite the importance of the network environment, it is neglected during target selection for drug discovery. Here, we present the first systematic, comprehensive computational analysis of topological, community and graphical network parameters of the human interactome and identify discriminatory network patterns that strongly distinguish drug targets from the interactome as a whole. Importantly, we identify striking differences in the network behavior of targets of cancer drugs versus targets from other therapeutic areas and explore how they may relate to successful drug combinations to overcome acquired resistance to cancer drugs. We develop, computationally validate and provide the first public domain predictive algorithm for identifying druggable neighborhoods based on network parameters. We also make available full predictions for 13,345 proteins to aid target selection for drug discovery. All target predictions are available through canSAR.icr.ac.uk. Underlying data and tools are available at https://cansar.icr.ac.uk/cansar/publications/druggable_network_neighbourhoods/.Author Summary: The need for well-validated targets for drug discovery is more pressing than ever, especially in cancer in view of resistance to current therapeutics coupled with late stage drug failures. Target prioritization and selection methodologies have typically not taken the protein interaction environment into account. Here we analyze a large representation of the human interactome comprising almost 90,000 interactions between 13,345 proteins. We assess these interactions using an extensive set of topological, graphical and community parameters, and we identify behaviors that distinguish the protein interaction environments of drug targets from the general interactome. Moreover, we identify clear distinctions between the network environment of cancer-drug targets and targets from other therapeutics areas. We use these distinguishing properties to build a predictive methodology to prioritize potential drug targets based on network parameters alone and we validate our predictive models using current FDA-approved drug targets. Our models provide an objective, interactome-based target prioritization methodology to complement existing structure-based and ligand-based prioritization methods. We provide our interactome-based predictions alongside other druggability predictors within the public canSAR resource (cansar.icr.ac.uk).

Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004597 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04597&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004597

DOI: 10.1371/journal.pcbi.1004597

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1004597