Predicting Surgery Targets in Temporal Lobe Epilepsy through Structural Connectome Based Simulations
Frances Hutchings,
Cheol E Han,
Simon S Keller,
Bernd Weber,
Peter N Taylor and
Marcus Kaiser
PLOS Computational Biology, 2015, vol. 11, issue 12, 1-24
Abstract:
Temporal lobe epilepsy (TLE) is a prevalent neurological disorder resulting in disruptive seizures. In the case of drug resistant epilepsy resective surgery is often considered. This is a procedure hampered by unpredictable success rates, with many patients continuing to have seizures even after surgery. In this study we apply a computational model of epilepsy to patient specific structural connectivity derived from diffusion tensor imaging (DTI) of 22 individuals with left TLE and 39 healthy controls. We validate the model by examining patient-control differences in simulated seizure onset time and network location. We then investigate the potential of the model for surgery prediction by performing in silico surgical resections, removing nodes from patient networks and comparing seizure likelihood post-surgery to pre-surgery simulations. We find that, first, patients tend to transit from non-epileptic to epileptic states more often than controls in the model. Second, regions in the left hemisphere (particularly within temporal and subcortical regions) that are known to be involved in TLE are the most frequent starting points for seizures in patients in the model. In addition, our analysis also implicates regions in the contralateral and frontal locations which may play a role in seizure spreading or surgery resistance. Finally, the model predicts that patient-specific surgery (resection areas chosen on an individual, model-prompted, basis and not following a predefined procedure) may lead to better outcomes than the currently used routine clinical procedure. Taken together this work provides a first step towards patient specific computational modelling of epilepsy surgery in order to inform treatment strategies in individuals.Author Summary: Temporal lobe epilepsy (TLE) is a disorder characterised by unpredictable seizures, where surgical removal of brain tissue is often the final treatment option. In roughly 30% of cases surgery procedures are unsuccessful at preventing future seizures. This paper shows the application of a computational model which uses patient derived brain connectivity to predict the success rates of surgery in people with TLE. We consider the brains of 22 patients as networks, with brain regions as nodes and the white matter connections between them as edges. The brain network is unique to each subject and produced from brain imaging scans of 22 patients and 39 controls. Seizures are simulated before and after surgery, where surgery in the model is the removal of nodes from the network. The model successfully identifies regions known to be involved in TLE, and its predicted success rates for surgery are close to the results found in reality. The model additionally provides patient specific recommendations for surgical procedures, which in simulations show improved results compared to standard surgery in every case. This is a first step towards designing personalised surgery procedures in order to improve surgery success rates.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004642 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04642&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004642
DOI: 10.1371/journal.pcbi.1004642
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().