EconPapers    
Economics at your fingertips  
 

Pathway-Based Genomics Prediction using Generalized Elastic Net

Artem Sokolov, Daniel E Carlin, Evan O Paull, Robert Baertsch and Joshua M Stuart

PLOS Computational Biology, 2016, vol. 12, issue 3, 1-23

Abstract: We present a novel regularization scheme called The Generalized Elastic Net (GELnet) that incorporates gene pathway information into feature selection. The proposed formulation is applicable to a wide variety of problems in which the interpretation of predictive features using known molecular interactions is desired. The method naturally steers solutions toward sets of mechanistically interlinked genes. Using experiments on synthetic data, we demonstrate that pathway-guided results maintain, and often improve, the accuracy of predictors even in cases where the full gene network is unknown. We apply the method to predict the drug response of breast cancer cell lines. GELnet is able to reveal genetic determinants of sensitivity and resistance for several compounds. In particular, for an EGFR/HER2 inhibitor, it finds a possible trans-differentiation resistance mechanism missed by the corresponding pathway agnostic approach.Author Summary: The low costs of sequencing and other high-throughput technologies have made available large amounts of data to address molecular biology problems. However, often this means thousands of measurements, for example on gene expression, are assayed for a much smaller number of samples. The imbalance complicates the identification of genes that generalize to new samples and in finding a collection of genes that suggest a theme for interpreting the data. Pathway and network-based approaches have proven their worth in these situations. They force solutions onto known biology and they produce more robust predictors. In this manuscript, we describe a new formulation of statistical learning approaches that naturally incorporates gene-gene relationships, like those found in gene network databases. The theory we present helps unify and codify an explicit formulation for gene pathway-informed machine-learning that should have wide reach.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004790 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04790&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004790

DOI: 10.1371/journal.pcbi.1004790

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol (ploscompbiol@plos.org).

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1004790