Reconstruction of Tissue-Specific Metabolic Networks Using CORDA
André Schultz and
Amina A Qutub
PLOS Computational Biology, 2016, vol. 12, issue 3, 1-33
Abstract:
Human metabolism involves thousands of reactions and metabolites. To interpret this complexity, computational modeling becomes an essential experimental tool. One of the most popular techniques to study human metabolism as a whole is genome scale modeling. A key challenge to applying genome scale modeling is identifying critical metabolic reactions across diverse human tissues. Here we introduce a novel algorithm called Cost Optimization Reaction Dependency Assessment (CORDA) to build genome scale models in a tissue-specific manner. CORDA performs more efficiently computationally, shows better agreement to experimental data, and displays better model functionality and capacity when compared to previous algorithms. CORDA also returns reaction associations that can greatly assist in any manual curation to be performed following the automated reconstruction process. Using CORDA, we developed a library of 76 healthy and 20 cancer tissue-specific reconstructions. These reconstructions identified which metabolic pathways are shared across diverse human tissues. Moreover, we identified changes in reactions and pathways that are differentially included and present different capacity profiles in cancer compared to healthy tissues, including up-regulation of folate metabolism, the down-regulation of thiamine metabolism, and tight regulation of oxidative phosphorylation.Author Summary: Cellular metabolism is defined by a large, intricate network of thousands of components, and plays a fundamental role in many diseases. To study this network in its entirety, metabolic models have been built which encompass all known biochemical reactions in the human metabolism. However, since not all metabolic reactions take place in any given tissue, these generalized models need to be tailored to study specific cell types. Algorithms developed to date to perform this tailoring process have focused on keeping tissue-specific models as concise as possible. This approach, however, can remove essential reactions from the model and hamper subsequent analysis. Here we present CORDA, a tissue-specific building algorithm that yields concise, but not minimalistic, tissue-specific models. CORDA has many advantages over previous methods, including better agreement with experimental data and better model functionality. Using CORDA, we developed a library of 76 healthy and 20 cancer-specific models of metabolism, which we used to identify similarities between healthy and cancerous tissues, as well as metabolic pathways that are unique to cancer. Results of this work provide a broadly applicable tool to model cell- and tissue-specific metabolism, while highlighting potential new pathway targets for cancer therapies.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004808 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04808&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004808
DOI: 10.1371/journal.pcbi.1004808
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().