Mechanical Stress Induces Remodeling of Vascular Networks in Growing Leaves
Yohai Bar-Sinai,
Jean-Daniel Julien,
Eran Sharon,
Shahaf Armon,
Naomi Nakayama,
Mokhtar Adda-Bedia and
Arezki Boudaoud
PLOS Computational Biology, 2016, vol. 12, issue 4, 1-21
Abstract:
Differentiation into well-defined patterns and tissue growth are recognized as key processes in organismal development. However, it is unclear whether patterns are passively, homogeneously dilated by growth or whether they remodel during tissue expansion. Leaf vascular networks are well-fitted to investigate this issue, since leaves are approximately two-dimensional and grow manyfold in size. Here we study experimentally and computationally how vein patterns affect growth. We first model the growing vasculature as a network of viscoelastic rods and consider its response to external mechanical stress. We use the so-called texture tensor to quantify the local network geometry and reveal that growth is heterogeneous, resembling non-affine deformations in composite materials. We then apply mechanical forces to growing leaves after veins have differentiated, which respond by anisotropic growth and reorientation of the network in the direction of external stress. External mechanical stress appears to make growth more homogeneous, in contrast with the model with viscoelastic rods. However, we reconcile the model with experimental data by incorporating randomness in rod thickness and a threshold in the rod growth law, making the rods viscoelastoplastic. Altogether, we show that the higher stiffness of veins leads to their reorientation along external forces, along with a reduction in growth heterogeneity. This process may lead to the reinforcement of leaves against mechanical stress. More generally, our work contributes to a framework whereby growth and patterns are coordinated through the differences in mechanical properties between cell types.Author Summary: The development of an organism involves a coordination between the differentiation of cells in well-defined spatial patterns and the growth of tissues towards their target shapes. While extensive research has addressed each of these key processes, their coordination has received less attention. In particular, when a pattern has formed and the tissue continues growing, is the pattern passively dilated like a drawing on an inflated balloon, or does the pattern remodel during tissue expansion? We address this question in the context of leaf vasculature and examine the role of mechanics in leaf growth. We model the growing vascular network and identify quantities that compare network growth to background tissue growth. We apply this quantification to mature leaves that are stretched mechanically; we find that vasculature does not dilate passively and that veins reorient in the direction of external forces. This is reminiscent of the reinforcement of bones or of the cytoskeleton so as to resist to mechanical stress. In a developmental context, this might be an essential process to match patterns and growth.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004819 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04819&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004819
DOI: 10.1371/journal.pcbi.1004819
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().