EconPapers    
Economics at your fingertips  
 

Rapid Prediction of Bacterial Heterotrophic Fluxomics Using Machine Learning and Constraint Programming

Stephen Gang Wu, Yuxuan Wang, Wu Jiang, Tolutola Oyetunde, Ruilian Yao, Xuehong Zhang, Kazuyuki Shimizu, Yinjie J Tang and Forrest Sheng Bao

PLOS Computational Biology, 2016, vol. 12, issue 4, 1-22

Abstract: 13C metabolic flux analysis (13C-MFA) has been widely used to measure in vivo enzyme reaction rates (i.e., metabolic flux) in microorganisms. Mining the relationship between environmental and genetic factors and metabolic fluxes hidden in existing fluxomic data will lead to predictive models that can significantly accelerate flux quantification. In this paper, we present a web-based platform MFlux (http://mflux.org) that predicts the bacterial central metabolism via machine learning, leveraging data from approximately 100 13C-MFA papers on heterotrophic bacterial metabolisms. Three machine learning methods, namely Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), and Decision Tree, were employed to study the sophisticated relationship between influential factors and metabolic fluxes. We performed a grid search of the best parameter set for each algorithm and verified their performance through 10-fold cross validations. SVM yields the highest accuracy among all three algorithms. Further, we employed quadratic programming to adjust flux profiles to satisfy stoichiometric constraints. Multiple case studies have shown that MFlux can reasonably predict fluxomes as a function of bacterial species, substrate types, growth rate, oxygen conditions, and cultivation methods. Due to the interest of studying model organism under particular carbon sources, bias of fluxome in the dataset may limit the applicability of machine learning models. This problem can be resolved after more papers on 13C-MFA are published for non-model species.Author Summary: Metabolic information is important for disease treatment, bioprocess optimization, environmental remediation, biogeochemical cycle regulation, and our understanding of life’s origin and evolution. 13C-MFA can quantify microbial physiology at the level of metabolic reaction rates. To speed up microbial characterizations and fluxomic studies, we hypothesize that genetic and environmental factors generate specific fluxome patterns that can be recognized by machine learning. Aided by constraint programming and quadratic optimization, our platform based on machine learning (ML) can predict meaningful metabolic information about bacterial species in their environments. Further, it can offer constraints to improve the accuracy of flux balance analysis. This study infers that the bacterial metabolic network has a certain degree of rigidity in allocating carbon fluxes, and different microbial species may share common regulatory strategies for balancing carbon and energy metabolisms. As a proof of concept, we demonstrate that the use of data-driven artificial intelligence (AI) approaches, e.g., ML, may assist mechanistic based models to elucidate the topology of microbial fluxomes.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004838 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04838&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004838

DOI: 10.1371/journal.pcbi.1004838

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1004838