Benchmarking Inverse Statistical Approaches for Protein Structure and Design with Exactly Solvable Models
Hugo Jacquin,
Amy Gilson,
Eugene Shakhnovich,
Simona Cocco and
Rémi Monasson
PLOS Computational Biology, 2016, vol. 12, issue 5, 1-18
Abstract:
Inverse statistical approaches to determine protein structure and function from Multiple Sequence Alignments (MSA) are emerging as powerful tools in computational biology. However the underlying assumptions of the relationship between the inferred effective Potts Hamiltonian and real protein structure and energetics remain untested so far. Here we use lattice protein model (LP) to benchmark those inverse statistical approaches. We build MSA of highly stable sequences in target LP structures, and infer the effective pairwise Potts Hamiltonians from those MSA. We find that inferred Potts Hamiltonians reproduce many important aspects of ‘true’ LP structures and energetics. Careful analysis reveals that effective pairwise couplings in inferred Potts Hamiltonians depend not only on the energetics of the native structure but also on competing folds; in particular, the coupling values reflect both positive design (stabilization of native conformation) and negative design (destabilization of competing folds). In addition to providing detailed structural information, the inferred Potts models used as protein Hamiltonian for design of new sequences are able to generate with high probability completely new sequences with the desired folds, which is not possible using independent-site models. Those are remarkable results as the effective LP Hamiltonians used to generate MSA are not simple pairwise models due to the competition between the folds. Our findings elucidate the reasons for the success of inverse approaches to the modelling of proteins from sequence data, and their limitations.Author Summary: Inverse statistical approaches, modeling pairwise correlations between amino acids in the sequences of homologous proteins across many different organisms, can successfully extract protein structure (contact) information. Here, we benchmark those statistical approaches on exactly solvable models of proteins, folding on a 3D lattice, to assess the reasons underlying their success and their limitations. We show that the inferred parameters (effective pairwise interactions) of the statistical models have clear and quantitative interpretations in terms of positive (favoring the native fold) and negative (disfavoring competing folds) protein sequence design. New sequences randomly drawn from the statistical models are likely to fold into the native structures when effective pairwise interactions are accurately inferred, a performance which cannot be achieved with independent-site models.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004889 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04889&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004889
DOI: 10.1371/journal.pcbi.1004889
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().