EconPapers    
Economics at your fingertips  
 

A Crowdsourcing Approach to Developing and Assessing Prediction Algorithms for AML Prognosis

David P Noren, Byron L Long, Raquel Norel, Kahn Rrhissorrakrai, Kenneth Hess, Chenyue Wendy Hu, Alex J Bisberg, Andre Schultz, Erik Engquist, Li Liu, Xihui Lin, Gregory M Chen, Honglei Xie, Geoffrey A M Hunter, Paul C Boutros, Oleg Stepanov, 9 AML-OPC Consortium Dream, Thea Norman, Stephen H Friend, Gustavo Stolovitzky, Steven Kornblau and Amina A Qutub

PLOS Computational Biology, 2016, vol. 12, issue 6, 1-16

Abstract: Acute Myeloid Leukemia (AML) is a fatal hematological cancer. The genetic abnormalities underlying AML are extremely heterogeneous among patients, making prognosis and treatment selection very difficult. While clinical proteomics data has the potential to improve prognosis accuracy, thus far, the quantitative means to do so have yet to be developed. Here we report the results and insights gained from the DREAM 9 Acute Myeloid Prediction Outcome Prediction Challenge (AML-OPC), a crowdsourcing effort designed to promote the development of quantitative methods for AML prognosis prediction. We identify the most accurate and robust models in predicting patient response to therapy, remission duration, and overall survival. We further investigate patient response to therapy, a clinically actionable prediction, and find that patients that are classified as resistant to therapy are harder to predict than responsive patients across the 31 models submitted to the challenge. The top two performing models, which held a high sensitivity to these patients, substantially utilized the proteomics data to make predictions. Using these models, we also identify which signaling proteins were useful in predicting patient therapeutic response.Author Summary: Acute Myeloid Leukemia (AML) is a hematological cancer with a very low 5-year survival rate. It is a very heterogeneous disease, meaning that the molecular underpinnings that cause AML vary greatly among patients, necessitating the use of precision medicine for treatment. While this personalized approach could be greatly improved by the incorporation of high-throughput proteomics data into AML patient prognosis, the quantitative methods to do so are lacking. We held the DREAM 9 AML Outcome Prediction Challenge to foster support, collaboration, and participation from multiple scientific communities in order to solve this problem. The outcome of the challenge yielded several accurate methods (AUROC >0.78, BAC > 0.69) capable of predicting whether a patient would respond to therapy. Moreover, this study also determined aspects of the methods which enabled accurate predictions, as well as key signaling proteins that were informative to the most accurate models.

Date: 2016
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004890 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04890&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004890

DOI: 10.1371/journal.pcbi.1004890

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1004890