EconPapers    
Economics at your fingertips  
 

Disease Surveillance on Complex Social Networks

Jose L Herrera, Ravi Srinivasan, John S Brownstein, Alison P Galvani and Lauren Ancel Meyers

PLOS Computational Biology, 2016, vol. 12, issue 7, 1-16

Abstract: As infectious disease surveillance systems expand to include digital, crowd-sourced, and social network data, public health agencies are gaining unprecedented access to high-resolution data and have an opportunity to selectively monitor informative individuals. Contact networks, which are the webs of interaction through which diseases spread, determine whether and when individuals become infected, and thus who might serve as early and accurate surveillance sensors. Here, we evaluate three strategies for selecting sensors—sampling the most connected, random, and friends of random individuals—in three complex social networks—a simple scale-free network, an empirical Venezuelan college student network, and an empirical Montreal wireless hotspot usage network. Across five different surveillance goals—early and accurate detection of epidemic emergence and peak, and general situational awareness—we find that the optimal choice of sensors depends on the public health goal, the underlying network and the reproduction number of the disease (R0). For diseases with a low R0, the most connected individuals provide the earliest and most accurate information about both the onset and peak of an outbreak. However, identifying network hubs is often impractical, and they can be misleading if monitored for general situational awareness, if the underlying network has significant community structure, or if R0 is high or unknown. Taking a theoretical approach, we also derive the optimal surveillance system for early outbreak detection but find that real-world identification of such sensors would be nearly impossible. By contrast, the friends-of-random strategy offers a more practical and robust alternative. It can be readily implemented without prior knowledge of the network, and by identifying sensors with higher than average, but not the highest, epidemiological risk, it provides reasonably early and accurate information.Author Summary: As public health agencies strive to harness big data to improve outbreak surveillance, they face the challenge of extracting meaningful information that can be directly used to improve public health, without incurring additional costs. In this article, we address the question: Which nodes in a social network should be selectively monitored to detect and monitor outbreaks as early and accurately as possible? We derive best-case performance scenarios, and show that a practical strategy for data collection–recruiting friends of randomly selected individuals–is expected to perform reasonably well, in terms of the timing and reliability of the epidemiological information collected.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004928 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04928&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004928

DOI: 10.1371/journal.pcbi.1004928

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1004928