EconPapers    
Economics at your fingertips  
 

Bayesian Top-Down Protein Sequence Alignment with Inferred Position-Specific Gap Penalties

Andrew F Neuwald and Stephen F Altschul

PLOS Computational Biology, 2016, vol. 12, issue 5, 1-21

Abstract: We describe a Bayesian Markov chain Monte Carlo (MCMC) sampler for protein multiple sequence alignment (MSA) that, as implemented in the program GISMO and applied to large numbers of diverse sequences, is more accurate than the popular MSA programs MUSCLE, MAFFT, Clustal-Ω and Kalign. Features of GISMO central to its performance are: (i) It employs a “top-down” strategy with a favorable asymptotic time complexity that first identifies regions generally shared by all the input sequences, and then realigns closely related subgroups in tandem. (ii) It infers position-specific gap penalties that favor insertions or deletions (indels) within each sequence at alignment positions in which indels are invoked in other sequences. This favors the placement of insertions between conserved blocks, which can be understood as making up the proteins’ structural core. (iii) It uses a Bayesian statistical measure of alignment quality based on the minimum description length principle and on Dirichlet mixture priors. Consequently, GISMO aligns sequence regions only when statistically justified. This is unlike methods based on the ad hoc, but widely used, sum-of-the-pairs scoring system, which will align random sequences. (iv) It defines a system for exploring alignment space that provides natural avenues for further experimentation through the development of new sampling strategies for more efficiently escaping from suboptimal traps. GISMO’s superior performance is illustrated using 408 protein sets containing, on average, 235 sequences. These sets correspond to NCBI Conserved Domain Database alignments, which have been manually curated in the light of available crystal structures, and thus provide a means to assess alignment accuracy. GISMO fills a different niche than other MSA programs, namely identifying and aligning a conserved domain present within a large, diverse set of full length sequences. The GISMO program is available at http://gismo.igs.umaryland.edu/.Author Summary: Existing multiple alignment programs typically utilize (i) bottom-up progressive strategies, which require the time-consuming alignment of each pair of input sequences, (ii) ad hoc measures of alignment quality, and (iii) pre-specified, uniformly-defined gap penalties. Here we describe an alternative strategy that first provisionally aligns regions generally shared by all the input sequences, and then refines this alignment by iteratively realigning correlated sequences in tandem. It infers position-specific gap penalties directly from the evolving alignment. It avoids suboptimal traps by stochastically traversing the complex, correlated space of alignments using a statistically rigorous measure of alignment quality. For large sequence sets, this approach offers clear advantages in alignment accuracy over the most popular programs currently available.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004936 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04936&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004936

DOI: 10.1371/journal.pcbi.1004936

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1004936