EconPapers    
Economics at your fingertips  
 

Graded, Dynamically Routable Information Processing with Synfire-Gated Synfire Chains

Zhuo Wang, Andrew T Sornborger and Louis Tao

PLOS Computational Biology, 2016, vol. 12, issue 6, 1-17

Abstract: Coherent neural spiking and local field potentials are believed to be signatures of the binding and transfer of information in the brain. Coherent activity has now been measured experimentally in many regions of mammalian cortex. Recently experimental evidence has been presented suggesting that neural information is encoded and transferred in packets, i.e., in stereotypical, correlated spiking patterns of neural activity. Due to their relevance to coherent spiking, synfire chains are one of the main theoretical constructs that have been appealed to in order to describe coherent spiking and information transfer phenomena. However, for some time, it has been known that synchronous activity in feedforward networks asymptotically either approaches an attractor with fixed waveform and amplitude, or fails to propagate. This has limited the classical synfire chain’s ability to explain graded neuronal responses. Recently, we have shown that pulse-gated synfire chains are capable of propagating graded information coded in mean population current or firing rate amplitudes. In particular, we showed that it is possible to use one synfire chain to provide gating pulses and a second, pulse-gated synfire chain to propagate graded information. We called these circuits synfire-gated synfire chains (SGSCs). Here, we present SGSCs in which graded information can rapidly cascade through a neural circuit, and show a correspondence between this type of transfer and a mean-field model in which gating pulses overlap in time. We show that SGSCs are robust in the presence of variability in population size, pulse timing and synaptic strength. Finally, we demonstrate the computational capabilities of SGSC-based information coding by implementing a self-contained, spike-based, modular neural circuit that is triggered by streaming input, processes the input, then makes a decision based on the processed information and shuts itself down.Author Summary: Cognitive tasks are associated with the dynamic excitation of neural assemblies. When we consider how quickly and flexibly such collectives may be formed and incorporated in a task, a persistent question has been: how can the brain rapidly evoke and involve different neural assemblies in a computation, when synaptic coupling changes only slowly? Here, we demonstrate mechanisms whereby information may be rapidly and selectively routed through a neural circuit, and sub-circuits may be turned on and off. The resulting information processing framework achieves the goal that has been pursued, but until now largely not attained, of achieving faithful, flexible information transfer across many synapses and dynamic excitation of neural assemblies with fixed connectivities.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004979 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04979&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004979

DOI: 10.1371/journal.pcbi.1004979

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1004979