EconPapers    
Economics at your fingertips  
 

The Representation of Prediction Error in Auditory Cortex

Jonathan Rubin, Nachum Ulanovsky, Israel Nelken and Naftali Tishby

PLOS Computational Biology, 2016, vol. 12, issue 8, 1-28

Abstract: To survive, organisms must extract information from the past that is relevant for their future. How this process is expressed at the neural level remains unclear. We address this problem by developing a novel approach from first principles. We show here how to generate low-complexity representations of the past that produce optimal predictions of future events. We then illustrate this framework by studying the coding of ‘oddball’ sequences in auditory cortex. We find that for many neurons in primary auditory cortex, trial-by-trial fluctuations of neuronal responses correlate with the theoretical prediction error calculated from the short-term past of the stimulation sequence, under constraints on the complexity of the representation of this past sequence. In some neurons, the effect of prediction error accounted for more than 50% of response variability. Reliable predictions often depended on a representation of the sequence of the last ten or more stimuli, although the representation kept only few details of that sequence.Author Summary: A crucial aspect of all life is the ability to use past events in order to guide future behavior. To do that, creatures need the ability to predict future events. Indeed, predictability has been shown to affect neuronal responses in many animals and under many conditions. Clearly, the quality of predictions should depend on the amount and detail of the past information used to generate them. Here, by using a basic principle from information theory, we show how to derive explicitly the tradeoff between quality of prediction and complexity of the representation of past information. We then apply these ideas to a concrete case–neuronal responses recorded in auditory cortex during the presentation of oddball sequences, consisting of two tones with varying probabilities. We show that the neuronal responses fit quantitatively the prediction errors of optimal predictors derived from our theory, and use that result in order to deduce the properties of the representations of the past in the auditory system. We conclude that these memory representations have surprisingly long duration (10 stimuli back or more), but keep relatively little detail about this past. Our theory can be applied widely to other sensory systems.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005058 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 05058&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1005058

DOI: 10.1371/journal.pcbi.1005058

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1005058