EconPapers    
Economics at your fingertips  
 

When Does Model-Based Control Pay Off?

Wouter Kool, Fiery A Cushman and Samuel J Gershman

PLOS Computational Biology, 2016, vol. 12, issue 8, 1-34

Abstract: Many accounts of decision making and reinforcement learning posit the existence of two distinct systems that control choice: a fast, automatic system and a slow, deliberative system. Recent research formalizes this distinction by mapping these systems to “model-free” and “model-based” strategies in reinforcement learning. Model-free strategies are computationally cheap, but sometimes inaccurate, because action values can be accessed by inspecting a look-up table constructed through trial-and-error. In contrast, model-based strategies compute action values through planning in a causal model of the environment, which is more accurate but also more cognitively demanding. It is assumed that this trade-off between accuracy and computational demand plays an important role in the arbitration between the two strategies, but we show that the hallmark task for dissociating model-free and model-based strategies, as well as several related variants, do not embody such a trade-off. We describe five factors that reduce the effectiveness of the model-based strategy on these tasks by reducing its accuracy in estimating reward outcomes and decreasing the importance of its choices. Based on these observations, we describe a version of the task that formally and empirically obtains an accuracy-demand trade-off between model-free and model-based strategies. Moreover, we show that human participants spontaneously increase their reliance on model-based control on this task, compared to the original paradigm. Our novel task and our computational analyses may prove important in subsequent empirical investigations of how humans balance accuracy and demand.Author Summary: When you make a choice about what groceries to get for dinner, you can rely on two different strategies. You can make your choice by relying on habit, simply buying the items you need to make a meal that is second nature to you. However, you can also plan your actions in a more deliberative way, realizing that the friend who will join you is a vegetarian, and therefore you should not make the burgers that have become a staple in your cooking. These two strategies differ in how computationally demanding and accurate they are. While the habitual strategy is less computationally demanding (costs less effort and time), the deliberative strategy is more accurate. Scientists have been able to study the distinction between these strategies using a task that allows them to measure how much people rely on habit and planning strategies. Interestingly, we have discovered that in this task, the deliberative strategy does not increase performance accuracy, and hence does not induce a trade-off between accuracy and demand. We describe why this happens, and improve the task so that it embodies an accuracy-demand trade-off, providing evidence for theories of cost-based arbitration between cognitive strategies.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005090 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 05090&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1005090

DOI: 10.1371/journal.pcbi.1005090

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1005090