Kinase Inhibition Leads to Hormesis in a Dual Phosphorylation-Dephosphorylation Cycle
Peter Rashkov,
Ian P Barrett,
Robert E Beardmore,
Claus Bendtsen and
Ivana Gudelj
PLOS Computational Biology, 2016, vol. 12, issue 11, 1-15
Abstract:
Many antimicrobial and anti-tumour drugs elicit hormetic responses characterised by low-dose stimulation and high-dose inhibition. While this can have profound consequences for human health, with low drug concentrations actually stimulating pathogen or tumour growth, the mechanistic understanding behind such responses is still lacking. We propose a novel, simple but general mechanism that could give rise to hormesis in systems where an inhibitor acts on an enzyme. At its core is one of the basic building blocks in intracellular signalling, the dual phosphorylation-dephosphorylation motif, found in diverse regulatory processes including control of cell proliferation and programmed cell death. Our analytically-derived conditions for observing hormesis provide clues as to why this mechanism has not been previously identified. Current mathematical models regularly make simplifying assumptions that lack empirical support but inadvertently preclude the observation of hormesis. In addition, due to the inherent population heterogeneities, the presence of hormesis is likely to be masked in empirical population-level studies. Therefore, examining hormetic responses at single-cell level coupled with improved mathematical models could substantially enhance detection and mechanistic understanding of hormesis.Author Summary: Hormesis is a highly controversial and poorly understood phenomenon. It describes the idea that an inhibitor molecule, like an anti-cancer or anti-microbial drug, can inadvertently stimulate cell growth instead of suppressing it. This can have a profound effect on human health leading to failures in clinical treatments. Therefore, getting at the mechanistic basis of hormesis is critical for drug development and clinical practice, however molecular mechanisms underpinning hormesis remain poorly understood. In this paper we use a mathematical model to propose a simple and yet general mechanism that could explain why we find hormesis so widely in living systems. In particular, we discover that hormesis is present within a fundamental structure that forms a basic building block of many intracellular signalling pathways found in diverse processes including control of cell reproduction and programmed cell death. The benefits of our study are two-fold. Having simple molecular understanding of the causes of hormetic responses can greatly improve the design of new drug compounds that avoid such responses. Moreover, due to the fundamental nature of the newly proposed mechanism, our findings have a potential broad applicability to both anti-cancer and anti-microbial drugs.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005216 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 05216&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1005216
DOI: 10.1371/journal.pcbi.1005216
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol (ploscompbiol@plos.org).