EconPapers    
Economics at your fingertips  
 

Personalized glucose forecasting for type 2 diabetes using data assimilation

David J Albers, Matthew Levine, Bruce Gluckman, Henry Ginsberg, George Hripcsak and Lena Mamykina

PLOS Computational Biology, 2017, vol. 13, issue 4, 1-38

Abstract: Type 2 diabetes leads to premature death and reduced quality of life for 8% of Americans. Nutrition management is critical to maintaining glycemic control, yet it is difficult to achieve due to the high individual differences in glycemic response to nutrition. Anticipating glycemic impact of different meals can be challenging not only for individuals with diabetes, but also for expert diabetes educators. Personalized computational models that can accurately forecast an impact of a given meal on an individual’s blood glucose levels can serve as the engine for a new generation of decision support tools for individuals with diabetes. However, to be useful in practice, these computational engines need to generate accurate forecasts based on limited datasets consistent with typical self-monitoring practices of individuals with type 2 diabetes. This paper uses three forecasting machines: (i) data assimilation, a technique borrowed from atmospheric physics and engineering that uses Bayesian modeling to infuse data with human knowledge represented in a mechanistic model, to generate real-time, personalized, adaptable glucose forecasts; (ii) model averaging of data assimilation output; and (iii) dynamical Gaussian process model regression. The proposed data assimilation machine, the primary focus of the paper, uses a modified dual unscented Kalman filter to estimate states and parameters, personalizing the mechanistic models. Model selection is used to make a personalized model selection for the individual and their measurement characteristics. The data assimilation forecasts are empirically evaluated against actual postprandial glucose measurements captured by individuals with type 2 diabetes, and against predictions generated by experienced diabetes educators after reviewing a set of historical nutritional records and glucose measurements for the same individual. The evaluation suggests that the data assimilation forecasts compare well with specific glucose measurements and match or exceed in accuracy expert forecasts. We conclude by examining ways to present predictions as forecast-derived range quantities and evaluate the comparative advantages of these ranges.Author summary: Type 2 diabetes is a devastating disease that requires constant patient self-management of glucose, insulin, nutrition and exercise. Nevertheless, glucose and insulin dynamics are complicated, nonstationary, nonlinear, and individual-dependent, making self-management of diabetes a complex task. To help alleviate some of the difficulty for patients, we develop a method for personalized, real-time, glucose forecasting based on nutrition. Specifically, we create and evaluate the computational machinery based on both Gaussian process models and data assimilation that leverages the physiologic knowledge of two mechanistic models to produce a personalized, nutrition-based glucose forecast for individuals with type 2 diabetes in real time that is robust to sparse data and nonstationary patients. Our computational engine was conceived to be of potential use for diabetes self-management.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005232 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 05232&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1005232

DOI: 10.1371/journal.pcbi.1005232

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1005232