A human judgment approach to epidemiological forecasting
David C Farrow,
Logan C Brooks,
Sangwon Hyun,
Ryan J Tibshirani,
Donald S Burke and
Roni Rosenfeld
PLOS Computational Biology, 2017, vol. 13, issue 3, 1-19
Abstract:
Infectious diseases impose considerable burden on society, despite significant advances in technology and medicine over the past century. Advanced warning can be helpful in mitigating and preparing for an impending or ongoing epidemic. Historically, such a capability has lagged for many reasons, including in particular the uncertainty in the current state of the system and in the understanding of the processes that drive epidemic trajectories. Presently we have access to data, models, and computational resources that enable the development of epidemiological forecasting systems. Indeed, several recent challenges hosted by the U.S. government have fostered an open and collaborative environment for the development of these technologies. The primary focus of these challenges has been to develop statistical and computational methods for epidemiological forecasting, but here we consider a serious alternative based on collective human judgment. We created the web-based “Epicast” forecasting system which collects and aggregates epidemic predictions made in real-time by human participants, and with these forecasts we ask two questions: how accurate is human judgment, and how do these forecasts compare to their more computational, data-driven alternatives? To address the former, we assess by a variety of metrics how accurately humans are able to predict influenza and chikungunya trajectories. As for the latter, we show that real-time, combined human predictions of the 2014–2015 and 2015–2016 U.S. flu seasons are often more accurate than the same predictions made by several statistical systems, especially for short-term targets. We conclude that there is valuable predictive power in collective human judgment, and we discuss the benefits and drawbacks of this approach.Author summary: Despite advanced and widely accessible health care, a large number of annual deaths in the United States are attributable to infectious diseases like influenza. Many of these cases could be easily prevented if sufficiently advanced warning was available. This is the main goal of epidemiological forecasting, a relatively new field that attempts to predict when and where disease outbreaks will occur. In response to growing interest in this endeavor, many forecasting frameworks have been developed for a variety of diseases. We ask whether an approach based on collective human judgment can be used to produce reasonable forecasts and how such forecasts compare with forecasts produced by purely data-driven systems. To answer this, we collected simple predictions in real-time from a set of expert and non-expert volunteers during the 2014–2015 and 2015–2016 U.S. flu seasons and during the 2014–2015 chikungunya invasion of Central America, and we report several measures of accuracy based on these predictions. By comparing these predictions with published forecasts of data-driven methods, we build an intuition for the difficulty of the task and learn that there is real value in collective human judgment.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005248 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 05248&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1005248
DOI: 10.1371/journal.pcbi.1005248
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol (ploscompbiol@plos.org).