EconPapers    
Economics at your fingertips  
 

Inferring epidemiological parameters from phylogenies using regression-ABC: A comparative study

Emma Saulnier, Olivier Gascuel and Samuel Alizon

PLOS Computational Biology, 2017, vol. 13, issue 3, 1-31

Abstract: Inferring epidemiological parameters such as the R0 from time-scaled phylogenies is a timely challenge. Most current approaches rely on likelihood functions, which raise specific issues that range from computing these functions to finding their maxima numerically. Here, we present a new regression-based Approximate Bayesian Computation (ABC) approach, which we base on a large variety of summary statistics intended to capture the information contained in the phylogeny and its corresponding lineage-through-time plot. The regression step involves the Least Absolute Shrinkage and Selection Operator (LASSO) method, which is a robust machine learning technique. It allows us to readily deal with the large number of summary statistics, while avoiding resorting to Markov Chain Monte Carlo (MCMC) techniques. To compare our approach to existing ones, we simulated target trees under a variety of epidemiological models and settings, and inferred parameters of interest using the same priors. We found that, for large phylogenies, the accuracy of our regression-ABC is comparable to that of likelihood-based approaches involving birth-death processes implemented in BEAST2. Our approach even outperformed these when inferring the host population size with a Susceptible-Infected-Removed epidemiological model. It also clearly outperformed a recent kernel-ABC approach when assuming a Susceptible-Infected epidemiological model with two host types. Lastly, by re-analyzing data from the early stages of the recent Ebola epidemic in Sierra Leone, we showed that regression-ABC provides more realistic estimates for the duration parameters (latency and infectiousness) than the likelihood-based method. Overall, ABC based on a large variety of summary statistics and a regression method able to perform variable selection and avoid overfitting is a promising approach to analyze large phylogenies.Author summary: Given the rapid evolution of many pathogens, analysing their genomes by means of phylogenies can inform us about how they spread. This is the focus of the field known as “phylodynamics”. Most existing methods inferring epidemiological parameters from virus phylogenies are limited by the difficulty of handling complex likelihood functions, which commonly incorporate latent variables. Here, we use an alternative method known as regression-based Approximate Bayesian Computation (ABC), which circumvents this problem by using simulations and dataset comparisons. Since phylogenies are difficult to compare to one another, we introduce many summary statistics to describe them and take advantage of current machine learning techniques able to perform variable selection. We show that the accuracy we reach is comparable to that of existing methods. This accuracy increases with phylogeny size and can even be higher than that of existing methods for some parameters. Overall, regression-based ABC opens new perspectives to infer epidemiological parameters from large phylogenies.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005416 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 05416&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1005416

DOI: 10.1371/journal.pcbi.1005416

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1005416