Variable habitat conditions drive species covariation in the human microbiota
Charles K Fisher,
Thierry Mora and
Aleksandra M Walczak
PLOS Computational Biology, 2017, vol. 13, issue 4, 1-18
Abstract:
Two species with similar resource requirements respond in a characteristic way to variations in their habitat—their abundances rise and fall in concert. We use this idea to learn how bacterial populations in the microbiota respond to habitat conditions that vary from person-to-person across the human population. Our mathematical framework shows that habitat fluctuations are sufficient for explaining intra-bodysite correlations in relative species abundances from the Human Microbiome Project. We explicitly show that the relative abundances of closely related species are positively correlated and can be predicted from taxonomic relationships. We identify a small set of functional pathways related to metabolism and maintenance of the cell wall that form the basis of a common resource sharing niche space of the human microbiota.Author summary: The human body is inhabited by a vast number of microorganisms comprising the human microbiota. The species composition of the microbiota varies considerably from person-to-person and the relative abundances of some species rise and fall in concert. We introduce a mathematical model where differences in habitat conditions cause most of the variability of the microbiota. A statistical analysis shows that variable habitat conditions are sufficient for explaining the patterns of variation observed across a healthy human population and, as a result, the correlation between the relative abundances of two species reflects how closely related they are rather than how they directly interact with each other.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005435 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 05435&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1005435
DOI: 10.1371/journal.pcbi.1005435
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().