EconPapers    
Economics at your fingertips  
 

Dynamic compensation, parameter identifiability, and equivariances

Eduardo D Sontag

PLOS Computational Biology, 2017, vol. 13, issue 4, 1-17

Abstract: A recent paper by Karin et al. introduced a mathematical notion called dynamical compensation (DC) of biological circuits. DC was shown to play an important role in glucose homeostasis as well as other key physiological regulatory mechanisms. Karin et al. went on to provide a sufficient condition to test whether a given system has the DC property. Here, we show how DC can be formulated in terms of a well-known concept in systems biology, statistics, and control theory—that of parameter structural non-identifiability. Viewing DC as a parameter identification problem enables one to take advantage of powerful theoretical and computational tools to test a system for DC. We obtain as a special case the sufficient criterion discussed by Karin et al. We also draw connections to system equivalence and to the fold-change detection property.Author summary: A recently introduced mathematical notion called dynamical compensation of biological circuits was shown to play an important role in glucose homeostasis and other key physiological regulatory mechanisms. This paper explains how dynamical compensation can be formulated in terms of a well-known concept in systems biology, statistics, and control theory—that of parameter structural non-identifiability. Viewing dynamical compensation as a parameter identification problem enables one to take advantage of powerful theoretical and computational tools to test a system for dynamical compensation. As a special case, one obtains the sufficient criterion for dynamical compensation. The paper also draws connections to system equivalence and to the fold-change detection property. The non-identifiability characterization brings up an interesting contrast in the way in which one thinks of these properties in the two fields. From the point of view of robustness of behavior, one wishes that parameters do not influence much the response of a system. On the other hand, from the systems and parameter identification point of view, the more that a parameter affects behavior, the easier it is to estimate it, and poor sensitivity is taken as an indication of a poorly parametrized model.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005447 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 05447&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1005447

DOI: 10.1371/journal.pcbi.1005447

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1005447